2,191 research outputs found

    Composition-Tuned Pt-Skinned PtNi Bimetallic Clusters as Highly Efficient Methanol Dehydrogenation Catalysts

    Get PDF
    Platinum is the most active anode and cathode catalyst in next-generation fuel cells using methanol as liquid source of hydrogen. Its catalytic activity can be significantly improved by alloying with 3d metals, although a precise tuning of its surface architecture is still required. Herein, we report the design of a highly active low-temperature (below 0 °C) methanol dehydrogenation anode catalyst with reduced CO poisoning based on ultralow amount of precisely defined PtxNi1–x (x = 0 to 1) bimetallic clusters (BCs) deposited on inert flat oxides by cluster beam deposition. These BCs feature clear composition-dependent atomic arrangements and electronic structures stemming from their nucleation mechanism, which are responsible for a volcano-type activity trend peaking at the Pt0.7Ni0.3 composition. Our calculations reveal that at this composition, a cluster skin of Pt atoms with d-band centers downshifted by subsurface Ni atoms weakens the CO interaction that in turn triggers a significant increase in the methanol dehydrogenation activity

    Characterizing 51 Eri b from 1-5 μ\mum: a partly-cloudy exoplanet

    Full text link
    We present spectro-photometry spanning 1-5 μ\mum of 51 Eridani b, a 2-10 MJup_\text{Jup} planet discovered by the Gemini Planet Imager Exoplanet Survey. In this study, we present new K1K1 (1.90-2.19 μ\mum) and K2K2 (2.10-2.40 μ\mum) spectra taken with the Gemini Planet Imager as well as an updated LPL_P (3.76 μ\mum) and new MSM_S (4.67 μ\mum) photometry from the NIRC2 Narrow camera. The new data were combined with JJ (1.13-1.35 μ\mum) and HH (1.50-1.80 μ\mum) spectra from the discovery epoch with the goal of better characterizing the planet properties. 51 Eri b photometry is redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4-T8) and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the photosphere, spanning a range of cloud properties, including fully cloudy, cloud free and patchy/intermediate opacity clouds. Model fits suggest that 51 Eri b has an effective temperature ranging between 605-737 K, a solar metallicity, a surface gravity of log\log(g) = 3.5-4.0 dex, and the atmosphere requires a patchy cloud atmosphere to model the SED. From the model atmospheres, we infer a luminosity for the planet of -5.83 to -5.93 (logL/L\log L/L_{\odot}), leaving 51 Eri b in the unique position as being one of the only directly imaged planet consistent with having formed via cold-start scenario. Comparisons of the planet SED against warm-start models indicates that the planet luminosity is best reproduced by a planet formed via core accretion with a core mass between 15 and 127 M_{\oplus}.Comment: 27 pages, 19 figures, Accepted for publication in The Astronomical Journa

    The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics From 10-100 AU

    Full text link
    We present a statistical analysis of the first 300 stars observed by the Gemini Planet Imager Exoplanet Survey (GPIES). This subsample includes six detected planets and three brown dwarfs; from these detections and our contrast curves we infer the underlying distributions of substellar companions with respect to their mass, semi-major axis, and host stellar mass. We uncover a strong correlation between planet occurrence rate and host star mass, with stars M >> 1.5 MM_\odot more likely to host planets with masses between 2-13 MJup_{\rm Jup} and semi-major axes of 3-100 au at 99.92% confidence. We fit a double power-law model in planet mass (m) and semi-major axis (a) for planet populations around high-mass stars (M >> 1.5M_\odot) of the form d2Ndmdamαaβ\frac{d^2 N}{dm da} \propto m^\alpha a^\beta, finding α\alpha = -2.4 ±\pm 0.8 and β\beta = -2.0 ±\pm 0.5, and an integrated occurrence rate of 94+59^{+5}_{-4}% between 5-13 MJup_{\rm Jup} and 10-100 au. A significantly lower occurrence rate is obtained for brown dwarfs around all stars, with 0.80.5+0.8^{+0.8}_{-0.5}% of stars hosting a brown dwarf companion between 13-80 MJup_{\rm Jup} and 10-100 au. Brown dwarfs also appear to be distributed differently in mass and semi-major axis compared to giant planets; whereas giant planets follow a bottom-heavy mass distribution and favor smaller semi-major axes, brown dwarfs exhibit just the opposite behaviors. Comparing to studies of short-period giant planets from the RV method, our results are consistent with a peak in occurrence of giant planets between ~1-10 au. We discuss how these trends, including the preference of giant planets for high-mass host stars, point to formation of giant planets by core/pebble accretion, and formation of brown dwarfs by gravitational instability.Comment: 52 pages, 18 figures. AJ in pres

    Scale dependency in the hydromorphological control of a stream ecosystem functioning

    Get PDF
    Physical habitat degradation is prevalent in river ecosystems. Although still little is known about the ecological consequences of altered hydromorphology, understanding the factors at play can contribute to sustainable environmental management. In this study we aimed to identify the hydromorphological features controlling a key ecosystem function and the spatial scales where such linkages operate. As hydromorphological and chemical pressures often occur in parallel, we examined the relative importance of hydromorphological and chemical factors as determinants of leaf breakdown. Leaf breakdown assays were investigated at 82 sites of rivers throughout the French territory. Leaf breakdown data were then crossed with data on water quality and with a multi-scale hydro- morphological assessment (i.e. upstream catchment, river segment, reach and habitat) when quantitative data were available. Microbial and total leaf breakdown rates exhibited differential responses to both hydromorphological and chemical alterations. Relationships between the chemical quality of the water and leaf breakdown were weak, while hydromorphological integrity explained independently up to 84.2% of leaf breakdown. Hydrological and morphological parameters were the main predictors of microbial leaf breakdown, whereas hydrological parameters had a major effect on total leaf breakdown, particularly at large scales, while morphological parameters were important at smaller scales. Microbial leaf breakdown were best predicted by hydromorphological features defined at the upstream catchment level whereas total leaf breakdown were best predicted by reach and habitat level geomorphic variables. This study demonstrates the use of leaf breakdown in a biomonitoring context and the importance of hydromorphological integrity for the functioning of running water. It provides new insights for envi- ronmental decision-makers to identify the management and restoration actions that have to be un- dertaken including the hydromorphogical features that should be kept in minimal maintenance to support leaf breakdown

    Unravelling the nucleation mechanism of bimetallic nanoparticles with composition-tunable core–shell arrangement

    Get PDF
    The structure and atomic ordering of Au–Ag nanoparticles grown in the gas phase are determined by a combination of HAADF-STEM, XPS and Refl-XAFS techniques as a function of composition. It is shown consistently from all the techniques that an inversion of chemical ordering takes place by going from Au-rich to Ag-rich compositions, with the minority element always occupying the nanoparticle core, and the majority element enriching the shell. With the aid of DFT calculations, this composition-tunable chemical arrangement is rationalized in terms of a four-step growth process in which the very first stage of cluster nucleation plays a crucial role. The four-step growth mechanism is based on mechanisms of a general character, likely to be applicable to a variety of binary systems besides Au–Ag

    High Prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae Detected in the Human Gut Using an Improved DNA Detection Protocol

    Get PDF
    Background: The low and variable prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae DNA in human stool contrasts with the paramount role of these methanogenic Archaea in digestion processes. We hypothesized that this contrast is a consequence of the inefficiencies of current protocols for archaeon DNA extraction. We developed a new protocol for the extraction and PCR-based detection of M. smithii and M. stadtmanae DNA in human stool. Methodology/Principal Findings: Stool specimens collected from 700 individuals were filtered, mechanically lysed twice, and incubated overnight with proteinase K prior to DNA extraction using a commercial DNA extraction kit. Total DNA was used as a template for quantitative real-time PCR targeting M. smithii and M. stadtmanae 16S rRNA and rpoB genes. Amplification of 16S rRNA and rpoB yielded positive detection of M. smithii in 95.7% and M. stadtmanae in 29.4% of specimens. Sequencing of 16S rRNA gene PCR products from 30 randomly selected specimens ( 15 for M. smithii and 15 for M. stadtmanae) yielded a sequence similarity of 99-100% using the reference M. smithii ATCC 35061 and M. stadtmanae DSM 3091 sequences. Conclusions/Significance: In contrast to previous reports, these data indicate a high prevalence of the methanogens M. smithii and M. stadtmanae in the human gut, with the former being an almost ubiquitous inhabitant of the intestinal microbiome

    Global Analysis of Circulating Immune Cells by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry

    Get PDF
    Background: MALDI-TOF mass spectrometry is currently used in microbiological diagnosis to characterize bacterial populations. Our aim was to determine whether this technique could be applied to intact eukaryotic cells, and in particular, to cells involved in the immune response. Methodology/Principal Findings: A comparison of frozen monocytes, T lymphocytes and polymorphonuclear leukocytes revealed specific peak profiles. We also found that twenty cell types had specific profiles, permitting the establishment of a cell database. The circulating immune cells, namely monocytes, T lymphocytes and polymorphonuclear cells, were distinct from tissue immune cells such as monocyte-derived macrophages and dendritic cells. In addition, MALDI-TOF mass spectrometry was valuable to easily identify the signatures of monocytes and T lymphocytes in peripheral mononuclear cells. Conclusions/Significance: This method was rapid and easy to perform, and unlike flow cytometry, it did not require any additional components such as specific antibodies. The MALDI-TOF mass spectrometry approach could be extended t

    Heat stored in the Earth system:where does the energy go?

    Get PDF
    Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system – and particularly how much and where the heat is distributed – is fundamental to understanding how this affects warming ocean, atmosphere and land; rising surface temperature; sea level; and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960–2018. The study obtains a consistent long-term Earth system heat gain over the period 1971–2018, with a total heat gain of 358±37 ZJ, which is equivalent to a global heating rate of 0.47±0.1 W m−2. Over the period 1971–2018 (2010–2018), the majority of heat gain is reported for the global ocean with 89 % (90 %), with 52 % for both periods in the upper 700 m depth, 28 % (30 %) for the 700–2000 m depth layer and 9 % (8 %) below 2000 m depth. Heat gain over land amounts to 6 % (5 %) over these periods, 4 % (3 %) is available for the melting of grounded and floating ice, and 1 % (2 %) is available for atmospheric warming. Our results also show that EEI is not only continuing, but also increasing: the EEI amounts to 0.87±0.12 W m−2 during 2010–2018. Stabilization of climate, the goal of the universally agreed United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the Paris Agreement in 2015, requires that EEI be reduced to approximately zero to achieve Earth's system quasi-equilibrium. The amount of CO2 in the atmosphere would need to be reduced from 410 to 353 ppm to increase heat radiation to space by 0.87 W m−2, bringing Earth back towards energy balance. This simple number, EEI, is the most fundamental metric that the scientific community and public must be aware of as the measure of how well the world is doing in the task of bringing climate change under control, and we call for an implementation of the EEI into the global stocktake based on best available science. Continued quantification and reduced uncertainties in the Earth heat inventory can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, and the establishment of an international framework for concerted multidisciplinary research of the Earth heat inventory as presented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https://www.dkrz.de/, last access: 7 August 2020) under the DOI https://doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2 (von Schuckmann et al., 2020)

    Characterizing 51 Eri b from 1 to 5 μm : a partly cloudy exoplanet

    Get PDF
    Funding: This work was supported by NSF grants AST-1411868 (A.R., J.L.P., B.M.), AST-1518332 (R.J.D.R.), and DGE-1311230 (K.W.D.). F.M. and E.N. are supported by NASA Grant NNX14AJ80G. This work was supported by Fonds de Recherche du Québec (J.R., R.D., D.L.). K.M.M. and T.S.B. are supported by the NASA Exoplanets Research Program (XRP) by cooperative agreement NNX16AD44G. G.V. and J.K.W. acknowledge JPL’s ESI program for GPI-related funding.We present spectrophotometry spanning 1–5 μm of 51 Eridani b, a 2–10 MJup planet discovered by the Gemini Planet Imager Exoplanet Survey. In this study, we present new K1 (1.90–2.19 μm) and K2 (2.10–2.40 μm) spectra taken with the Gemini Planet Imager as well as an updated LP (3.76 μm) and new MS (4.67 μm) photometry from the NIRC2 Narrow camera. The new data were combined with J (1.13–1.35 μm) and H (1.50–1.80 μm) spectra from the discovery epoch with the goal of better characterizing the planet properties. The 51 Eri b photometry is redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4 and T8), and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the photosphere, spanning a range of cloud properties, including fully cloudy, cloud-free, and patchy/intermediate-opacity clouds. The model fits suggest that 51 Eri b has an effective temperature ranging between 605 and 737 K, a solar metallicity, and a surface gravity of log(g) = 3.5–4.0 dex, and the atmosphere requires a patchy cloud atmosphere to model the spectral energy distribution (SED). From the model atmospheres, we infer a luminosity for the planet of −5.83 to −5.93 (log L/L⊙), leaving 51 Eri b in the unique position of being one of the only directly imaged planets consistent with having formed via a cold-start scenario. Comparisons of the planet SED against warm-start models indicate that the planet luminosity is best reproduced by a planet formed via core accretion with a core mass between 15 and 127 M⊕.Publisher PDFPeer reviewe
    corecore