99 research outputs found

    BVRI Observations of the Optical Afterglow of GRB 990510

    Get PDF
    We present BVRIBVRI observations of the optical counterpart to the Gamma-Ray Burst (GRB) 990510 obtained with the Las Campanas 1.0-m telescope between 15 and 48 hours after the burst. The temporal analysis of the data indicates steepening decay, independent of wavelength, approaching asymptotically t0.76±0.01t^{-0.76\pm 0.01} at early times (t1day)t\ll 1 day) and t2.40±0.02t^{-2.40\pm 0.02} at late times, with the break time at t0=1.57±0.03dayst_0=1.57\pm 0.03 days. GRB 990510 is the most rapidly fading of the well-documented GRB afterglows. It is also the first observed example of broad-band break for a GRB optical counterpart. The optical spectral energy distribution, corrected for significant Galactic reddening, is well fitted by a single power-law with ν0.61±0.12\nu^{-0.61\pm 0.12}. However, when the BB-band point is dropped from the fit, the power-law becomes ν0.46±0.08\nu^{-0.46\pm 0.08}, indicating a possible deviation from the power-law in the spectrum, either intrinsic or due to additional extinction near the source or from an intervening galaxy at z=1.62z=1.62. Broad-band break behavior broadly similar to that observed in GRB 990510 has been predicted in some jet models of GRB afterglows, thus supporting the idea that the GRB energy is beamed, at least in some cases.Comment: submitted to the ApJ Letters, 13 pages, 5 tables, 3 figures; additional data available at ftp://cfa-ftp.harvard.edu/pub/kstanek/GRB990510/ and through WWW at http://cfa-www.harvard.edu/cfa/oir/Research/GRB

    The dust origin of the Broad Line Region and the model consequences for AGN unification scheme

    Full text link
    We propose a very simple physical mechanism responsible for the formation of the Low Ionization Line part of the Broad Line Region in Active Galactic Nuclei. It explains the scaling of the Broad Line Region size with the monochromatic luminosity, including the exact slope and the proportionality constant, seen in the reverberation studies of nearby sources. The scaling is independent from the mass and accretion rate of an active nucleus. The mechanism predicts the formation of a dust-driven wind in the disk region where the local effective temperature of a non-illuminated accretion disk drops below 1000 K and allows for dust formation. We explore now the predictive power of the model with the aim to differentiate between this model and the previously proposed mechanisms of the formation of the Broad Line Region. We discuss the expected departures from the universal scaling at long wavelength, and the role of the inclination angle of the accretion disk in the source. We compare the expected line profiles with Mg II line profiles in the quasars observed by us with the SALT telescope. We also discuss the tests based on the presence or absence of the broad emission lines in low luminosity active galaxies. Finally, we discuss the future tests of the model to be done with expected ground-based observations and satellite missions.Comment: Based the talk presented during the COSPAR 2014 meeting, Advances in Space Research (in press

    Tracing dark energy with quasars

    Get PDF
    The nature of dark energy, driving the accelerated expansion of the Universe, is one of the most important issues in modern astrophysics. In order to understand this phenomenon, we need precise astrophysical probes of the universal expansion spanning wide redshift ranges. Quasars have recently emerged as such a probe, thanks to their high intrinsic luminosities and, most importantly, our ability to measure their luminosity distances independently of redshifts. Here we report our ongoing work on observational reverberation mapping using the time delay of the Mg II line, performed with the South African Large Telescope (SALT).Comment: 3 pages, 2 figures, submitted as PTA proceeding

    Proper motions and membership probabilities of stars in the region of globular cluster NGC 6809

    Full text link
    NGC 6809 is a luminous metal-poor halo globular cluster that is relatively easy to study due to its proximity and low concentration. Because of its high Galactic latitude (b = -23deg), interstellar reddening and contamination is not very high. We aim to determine the relative proper motion and membership probability of the stars in the wide area of globular cluster NGC 6809. To target cluster members reliably during spectroscopic surveys and both spatial and radial distributions in the cluster outskirts without including field stars, a good proper motion and membership probability catalogue of NGC 6809 is required.The archival data of two epochs with a time-base line of 7.1 years have been collected with Wide Field Imager (WFI) mounted on the 2.2m MPG/ESO telescope. The CCD images of both epochs have been reduced using the astrometric techniques as described in Anderson et al. (2006). The calibrated UBVI magnitudes have been derived using Stetson's secondary standard stars. We derived the relative proper motion and membership probabilities for \sim 12600 stars in the field of globular cluster NGC 6809. The measurement error in proper motions for the stars of V \sim 17 mag is 2.0 mas/yr, gradually increasing up to \sim 3 mas/yr at V = 20 mag. We also provide the membership probability for the published different types of sources in NGC 6809. An electronic catalogue with proper motion and membership probability for the stars will be available to the astronomical community.Comment: Accepted for publication in The A&A. 11 pages. 11 figures,5 Table

    The Clusters AgeS Experiment (CASE). II. The Eclipsing Blue Straggler OGLEGC-228 in the Globular Cluster 47 Tuc

    Full text link
    We use photometric and spectroscopic observations of the eclipsing binary OGLEGC-228 (V228) to derive the masses, radii, and luminosities of the component stars. Based on measured systemic velocity, proper motion and distance, the system is a blue straggler member of the globular cluster 47 Tuc. Our analysis shows that V228 is a semi-detached Algol. We obtain M=1.512 +/- 0.022 Msun, R=1.357 +/- 0.019 Rsun, L=7.02 +/- 0.050 Lsun for the hotter and more luminous primary component and M=0.200 +/- 0.007 Msun, R=1.238 +/- 0.013 Rsun, L=1.57 +/- 0.09 Lsun for the Roche lobe filling secondary.Comment: 19 pages, 5 figures, AJ, in pres

    XMM-Newton X-ray and optical observations of the globular clusters M 55 and NGC 3201

    Full text link
    We have observed two low concentration Galactic globular clusters with the X-ray observatory XMM-Newton. We detect 47 faint X-ray sources in the direction of M 55 and 62 in the field of view of NGC 3201. Using the statistical Log N-Log S relationship of extragalactic sources derived from XMM-Newton Lockman Hole observations, to estimate the background source population, we estimate that very few of the sources (1.5+/-1.0) in the field of view of M 55 actually belong to the cluster. These sources are located in the centre of the cluster as we expect if the cluster has undergone mass segregation. NGC 3201 has approximately 15 related sources, which are centrally located but are not constrained to lie within the half mass radius. The sources belonging to this cluster can lie up to 5 core radii from the centre of the cluster which could imply that this cluster has been perturbed. Using X-ray (and optical, in the case of M 55) colours, spectral and timing analysis (where possible) and comparing these observations to previous X-ray observations, we find evidence for sources in each cluster that could be cataclysmic variables, active binaries, millisecond pulsars and possible evidence for a quiescent low mass X-ray binary with a neutron star primary, even though we do not expect any such objects in either of the clusters, due to their low central concentrations. The majority of the other sources are background sources, such as AGN.Comment: 12 pages, 7 figures, accepted to be published in A&

    VW LMi: tightest quadruple system known. Light-time effect and possible secular changes of orbits

    Full text link
    Tightest known quadruple systems VW LMi consists of contact eclipsing binary with P_12 = 0.477551 days and detached binary with P_34 = 7.93063 days revolving in rather tight, 355.0-days orbit. This paper presents new photometric and spectroscopic observations yielding 69 times of minima and 36 disentangled radial velocities for the component stars. All available radial velocities and minima times are combined to better characterize the orbits and to derive absolute parameters of components. The total mass of the quadruple system was estimated at 4.56 M_sun. The detached, non-eclipsing binary with orbital period P = 7.93 days is found to show apsidal motion with U approximately 80 years. Precession period in this binary, caused by the gravitational perturbation of the contact binary, is estimated to be about 120 years. The wide mutual orbit and orbit of the non-eclipsing pair are found to be close to coplanarity, preventing any changes of the inclination angle of the non-eclipsing orbit and excluding occurrence of the second system of eclipses in future. Possibilities of astrometric solution and direct resolving of the wide, mutual orbit are discussed. Nearby star, HD95606, was found to form loose binary with quadruple system VW LMi.Comment: 4 figures. accepted to MNRAS on July 31, 200
    corecore