66 research outputs found

    Synergism/complementarity of recombinant adenoviral vectors and other vaccination platforms during induction of protective immunity against malaria

    Full text link
    The lack of immunogenicity of most malaria antigens and the complex immune responses required for achieving protective immunity against this infectious disease have traditionally hampered the development of an efficient human malaria vaccine. The current boom in development of recombinant viral vectors and their use in prime-boost protocols that result in enhanced immune outcomes have increased the number of malaria vaccine candidates that access pre-clinical and clinical trials. In the frontline, adenoviruses and poxviruses seem to be giving the best immunization results in experimental animals and their mutual combination, or their combination with recombinant proteins (formulated in adjuvants and given in sequence or being given as protein/virus admixtures), has been shown to reach unprecedented levels of anti-malaria immunity that predictably will be somehow reproduced in the human setting. However, all this optimism was previously seen in the malaria vaccine development field without many real applicable results to date. We describe here the current state-of-the-art in the field of recombinant adenovirus research for malaria vaccine development, in particular referring to their use in combination with other immunogens in heterologous prime-boost protocols, while trying to simultaneously show our contributions and point of view on this subject

    Structural and vibrational properties of CdAl2S4 under high pressure: Experimental and theoretical approach

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp5037926.”The behavior of defect chalcopyrite CdAl2S4 at high pressures and ambient temperature has been investigated in a joint experimental and theoretical study. High-pressure X-ray diffraction and Raman scattering measurements were complemented with theoretical ab initio calculations. The equation of state and pressure dependences of the structural parameters of CdAl2S4 were determined and compared to those of other AB(2)X(4) ordered-vacancy compounds. The pressure dependence of the Raman-active mode frequencies is reported, as well as the theoretical phonon dispersion curves and phonon density of states at 1 atm. Our measurements suggest that defect chalcopyrite CdAl2S4 undergoes a phase transition above 15 GPa to a disordered-rocksalt structure, whose equation of state was also obtained up to 25 GPa. In a downstroke from 25 GPa to 1 atm, our measurements indicate that CdAl2S4 does not return to the defect chalcopyrite phase; it partially retains the disordered-rocksalt phase and partially transforms into the spinel structure. The nature of the spinel structure was confirmed by the good agreement of our experimental results with our theoretical calculations. All in all, our experimental and theoretical results provide evidence that the spinel and defect chalcopyrite phases of CdAl2S4 are competitive at 1 atm. This result opens the way to the synthesis of spinel-type CdAl2S4 at near-ambient conditions.Financial support from the Spanish Consolider Ingenio 2010 Program (Project CSD2007-00045) is acknowledged. This work was also supported by Spanish MICCIN under Project MAT2010-21270-C04-03/04 and by Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia under Projects UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11. Supercomputer time was provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. J.A.S. acknowledges the Juan de la Cierva fellowship program for financial support. AM. and P.R.-H. acknowledge S. Munoz Rodriguez for providing a data-parsing application.Sans Tresserras, JÁ.; Santamaría Pérez, D.; Popescu, C.; Gomis, O.; Manjón Herrera, FJ.; Vilaplana Cerda, RI.; Muñoz, A.... (2014). Structural and vibrational properties of CdAl2S4 under high pressure: Experimental and theoretical approach. Journal of Physical Chemistry C. 118(28):15363-15374. https://doi.org/10.1021/jp5037926S15363153741182

    Transition metal catalyzed element–element′ additions to alkynes

    Get PDF
    The efficient and stereoselective synthesis of, or precursors to, multi-substituted alkenes has attracted substantial interest due to their existence in various industrially and biologically important compounds. One of the most atom economical routes to such alkenes is the transition metal catalyzed hetero element–element′ π-insertion into alkynes. This article provides a thorough up-to-date review on this area of chemistry, including discussions on the mechanism, range of Esingle bondE′ bonds accessible and the stoichiometric/catalytic transition metal mediators employed

    Madagascar’s extraordinary biodiversity: Threats and opportunities

    Get PDF
    Madagascar's unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar's terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as themost prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar

    Madagascar’s extraordinary biodiversity: Evolution, distribution, and use

    Get PDF
    Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique living laboratory for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity

    Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5

    No full text
    Abstract Background Neoplastic cells proliferate rapidly and obtain requisite building blocks by reprogramming metabolic pathways that favor growth. Previously, we observed that prostate cancer cells uptake and store lipids in the form of lipid droplets, providing building blocks for membrane synthesis, to facilitate proliferation and growth. Mechanisms of lipid uptake, lipid droplet dynamics and their contribution to cancer growth have yet to be defined. This work is focused on elucidating the prostate cancer-specific modifications in lipid storage pathways so that these modified gene products can be identified and therapeutically targeted. Methods To identify genes that promote lipid droplet formation and storage, the expression profiles of candidate genes were assessed and compared between peripheral blood mononuclear cells and prostate cancer cells. Subsequently, differentially expressed genes were inhibited and growth assays performed to elucidate their role in the growth of the cancer cells. Cell cycle, apoptosis and autophagy assays were performed to ascertain the mechanism of growth inhibition. Results Our results indicate that DGAT1, ABHD5, ACAT1 and ATGL are overexpressed in prostate cancer cells compared to PBMCs and of these overexpressed genes, DGAT1 and ABHD5 aid in the growth of the prostate cancer cells. Blocking the expression of both DGAT1 and ABHD5 results in inhibition of growth, cell cycle block and cell death. DGAT1 siRNA treatment inhibits lipid droplet formation and leads to autophagy where as ABHD5 siRNA treatment promotes accumulation of lipid droplets and leads to apoptosis. Both the siRNA treatments reduce AMPK phosphorylation, a key regulator of lipid metabolism. While DGAT1 siRNA reduces phosphorylation of ACC, the rate limiting enzyme in de novo fat synthesis and triggers phosphorylation of raptor and ULK-1 inducing autophagy and cell death, ABHD5 siRNA decreases P70S6 phosphorylation, leading to PARP cleavage, apoptosis and cell death. Interestingly, DGAT-1 is involved in the synthesis of triacylglycerol where as ABHD5 is a hydrolase and participates in the fatty acid oxidation process, yet inhibition of both enzymes similarly promotes prostate cancer cell death. Conclusion Inhibition of either DGAT1 or ABHD5 leads to prostate cancer cell death. Both DGAT1 and ABHD5 can be selectively targeted to block prostate cancer cell growth

    Carcinomatous meningitis in a patient with Her2/neu expressing bladder cancer following trastuzumab and chemotherapy: a case report and review of the literature

    No full text
    INTRODUCTION: Targeted therapies may impact the natural history of bladder cancer based upon their pharmacokinetics. The Her2/neu receptor tyrosine kinase, overexpressed by half of all primary urothelial carcinomas, has recently been examined as a therapeutic target in bladder cancer in a prospective phase II multicenter trial (NCI-198) that enrolled 109 patients with advanced bladder carcinomas for treatment with trastuzumab in combination with paclitaxel, carboplatin, and gemcitabine. We report on documented isolated Her2/neu positive carcinomatous meningitis in a patient treated with trastuzumab. CASE PRESENTATION: A 61-year-old Caucasian man with metastatic bladder cancer was treated with neoadjuvant chemotherapy in combination with trastuzumab with a partial response that was followed by a complete response after surgery. He relapsed with isolated Her2/neu positive carcinomatous meningitis. CONCLUSION: Carcinomatous meningitis in bladder cancer is extremely rare. This is the first case reported of Her2/neu positive carcinomatous meningitis. Disease recurred solely at a sanctuary site, demonstrating that despite the systemic efficacy of trastuzumab in combination with chemotherapy, its inability to enter the central nervous system potentially contributes to the unusual site of disease recurrence
    corecore