480 research outputs found
Microstructural enrichment functions based on stochastic Wang tilings
This paper presents an approach to constructing microstructural enrichment
functions to local fields in non-periodic heterogeneous materials with
applications in Partition of Unity and Hybrid Finite Element schemes. It is
based on a concept of aperiodic tilings by the Wang tiles, designed to produce
microstructures morphologically similar to original media and enrichment
functions that satisfy the underlying governing equations. An appealing feature
of this approach is that the enrichment functions are defined only on a small
set of square tiles and extended to larger domains by an inexpensive stochastic
tiling algorithm in a non-periodic manner. Feasibility of the proposed
methodology is demonstrated on constructions of stress enrichment functions for
two-dimensional mono-disperse particulate media.Comment: 27 pages, 12 figures; v2: completely re-written after the first
revie
Models, measurement and inference in epithelial tissue dynamics
The majority of solid tumours arise in epithelia and therefore much research effort has gone into investigating the growth, renewal and regulation of these tissues. Here we review different mathematical and computational approaches that have been used to model epithelia. We compare different models and describe future challenges that need to be overcome in order to fully exploit new data which present, for the first time, the real possibility for detailed model validation and comparison
Conscientiousness, Career Success, and Longevity: A Lifespan Analysis
Markers of executive functioning, such as prudent planning for the future and impulse control, are related to conscientiousness and may be central to both occupational success and health outcomes.
The aim of the study was to examine relations among conscientiousness, career success, and mortality risk across a 65-year period.
Using data derived from 693 male participants in the Terman Life Cycle Study, we examined associations among childhood personality, midlife objective career success, and lifelong mortality risk through 2006.
Conscientiousness and career success each predicted lower mortality risk (N = 693, relative hazard (rh) = 0.82 [95% confidence interval = 0.74, 0.91] and rh = 0.80 [0.71, 0.91], respectively), with both shared and unique variance. Importantly, childhood personality moderated the success–longevity link; conscientiousness was most relevant for least successful individuals.
Conscientiousness and career success predicted longevity, but not in a straightforward manner. Findings highlight the importance of lifespan processes
On the contact detection for contact-impact analysis in multibody systems
One of the most important and complex parts of the simulation of multibody systems with contact-impact involves the detection of the precise instant of impact. In general, the periods of contact are very small and, therefore, the selection of the time step for the integration of the time derivatives of the state variables plays a crucial role in the dynamics of multibody systems. The conservative approach is to use very small time steps throughout the analysis. However, this solution is not efficient from the computational view point. When variable time step integration algorithms are used and the pre-impact dynamics does not involve high-frequencies the integration algorithms may use larger time steps and the contact between two surfaces may start with initial penetrations that are artificially high. This fact leads either to a stall of the integration algorithm or to contact forces that are physically impossible which, in turn, lead to post-impact dynamics that is unrelated to the physical problem. The main purpose of this work is to present a general and comprehensive approach to automatically adjust the time step, in variable time step integration algorithms, in the vicinity of contact of multibody systems. The proposed methodology ensures that for any impact in a multibody system the time step of the integration is such that any initial penetration is below any prescribed threshold. In the case of the start of contact, and after a time step is complete, the numerical error control of the selected integration algorithm is forced to handle the physical criteria to accept/reject time steps in equal terms with the numerical error control that it normally uses. The main features of this approach are the simplicity of its computational implementation, its good computational efficiency and its ability to deal with the transitions between non contact and contact situations in multibody dynamics. A demonstration case provides the results that support the discussion and show the validity of the proposed methodology.Fundação para a Ciência e a Tecnologia (FCT
Safety and efficacy of low-dose sirolimus in the PIK3CA-Related Overgrowth Spectrum
Purpose
PIK3CA-related overgrowth spectrum (PROS) encompasses a range of debilitating conditions defined by asymmetric overgrowth caused by mosaic activating PIK3CA variants. PIK3CA encodes the p110α catalytic subunit of phosphatidylinositol-3-kinase (PI3K), a critical transducer of growth factor signaling. As mTOR mediates the growth-promoting actions of PI3K, we hypothesized that the mTOR inhibitor sirolimus would slow pathological overgrowth.
Methods
Thirty-nine participants with PROS and progressive overgrowth were enrolled into open-label studies across three centers, and results were pooled. For the primary outcome, tissue volumes at affected and unaffected sites were measured by dual energy X-ray absorptiometry during 26 weeks of untreated run-in and 26 weeks of sirolimus therapy.
Results
Thirty participants completed the study. Sirolimus led to a change in mean percentage total tissue volume of –7.2% (SD 16.0, p = 0.04) at affected sites, but not at unaffected sites (+1.7%, SD 11.5, p = 0.48) (n = 23 evaluable). Twenty-eight of 39 (72%) participants had ≥1 adverse event related to sirolimus of which 37% were grade 3 or 4 in severity and 7/39 (18%) participants were withdrawn consequently.
Conclusion
This study suggests that low-dose sirolimus can modestly reduce overgrowth, but cautions that the side-effect profile is significant, mandating individualized risk–benefit evaluations for sirolimus treatment in PROS
Stimulant Reduction Intervention using Dosed Exercise (STRIDE) - CTN 0037: Study protocol for a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>There is a need for novel approaches to the treatment of stimulant abuse and dependence. Clinical data examining the use of exercise as a treatment for the abuse of nicotine, alcohol, and other substances suggest that exercise may be a beneficial treatment for stimulant abuse, with direct effects on decreased use and craving. In addition, exercise has the potential to improve other health domains that may be adversely affected by stimulant use or its treatment, such as sleep disturbance, cognitive function, mood, weight gain, quality of life, and anhedonia, since it has been shown to improve many of these domains in a number of other clinical disorders. Furthermore, neurobiological evidence provides plausible mechanisms by which exercise could positively affect treatment outcomes. The current manuscript presents the rationale, design considerations, and study design of the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) CTN-0037 Stimulant Reduction Intervention using Dosed Exercise (STRIDE) study.</p> <p>Methods/Design</p> <p>STRIDE is a multisite randomized clinical trial that compares exercise to health education as potential treatments for stimulant abuse or dependence. This study will evaluate individuals diagnosed with stimulant abuse or dependence who are receiving treatment in a residential setting. Three hundred and thirty eligible and interested participants who provide informed consent will be randomized to one of two treatment arms: Vigorous Intensity High Dose Exercise Augmentation (DEI) or Health Education Intervention Augmentation (HEI). Both groups will receive TAU (i.e., usual care). The treatment arms are structured such that the quantity of visits is similar to allow for equivalent contact between groups. In both arms, participants will begin with supervised sessions 3 times per week during the 12-week acute phase of the study. Supervised sessions will be conducted as one-on-one (i.e., individual) sessions, although other participants may be exercising at the same time. Following the 12-week acute phase, participants will begin a 6-month continuation phase during which time they will attend one weekly supervised DEI or HEI session.</p> <p>Clinical Trials Registry</p> <p>ClinicalTrials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01141608">NCT01141608</a></p> <p><url>http://clinicaltrials.gov/ct2/show/NCT01141608?term=Stimulant+Reduction+Intervention+using+Dosed+Exercise&rank=1</url></p
Variational Foundations and Generalized Unified Theory of RVE-Based Multiscale Models
A unified variational theory is proposed for a general class of multiscale models based on the concept of Representative Volume Element. The entire theory lies on three fundamental principles: (1) kinematical admissibility, whereby the macro- and micro-scale kinematics are defined and linked in a physically meaningful way; (2) duality, through which the natures of the force- and stress-like quantities are uniquely identified as the duals (power-conjugates) of the adopted kinematical variables; and (3) the Principle of Multiscale Virtual Power, a generalization of the well-known Hill-Mandel Principle of Macrohomogeneity, from which equilibrium equations and homogenization relations for the force- and stress-like quantities are unequivocally obtained by straightforward variational arguments. The proposed theory provides a clear, logically-structured framework within which existing formulations can be rationally justified and new, more general multiscale models can be rigorously derived in well-defined steps. Its generality allows the treatment of problems involving phenomena as diverse as dynamics, higher order strain effects, material failure with kinematical discontinuities, fluid mechanics and coupled multi-physics. This is illustrated in a number of examples where a range of models is systematically derived by following the same steps. Due to the variational basis of the theory, the format in which derived models are presented is naturally well suited for discretization by finite element-based or related methods of numerical approximation. Numerical examples illustrate the use of resulting models, including a non-conventional failure-oriented model with discontinuous kinematics, in practical computations
Global diversity and biogeography of deep-sea pelagic prokaryotes
The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean/'s microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50{\%} of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (\~{}3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.En prensa8,951
- …