2,868 research outputs found

    TB111: An Examination of Alternative Investment Strategies for Potato Market Improvement Funds

    Get PDF
    The primary objective of this study was to implement Potato Market Improvement Fund policy objectives and industry goals, using current production, storage, and packing operation data, to suggest alternative investment strategies for PMIF dollars.https://digitalcommons.library.umaine.edu/aes_techbulletin/1095/thumbnail.jp

    B798: A Census of Maine\u27s Potato Production, Storage, and Packing Operation

    Get PDF
    Both internal and external factors relating to the production and marketing of Maine potatoes continue to influence and often undermine the profitability and market position of this important agricultural industry in the State. Among these factors are the technical aspects related to commercial production, storage and packing of potatoes in Maine; the current market structure; responses by the Maine industry to market preferences; and public policies, both foreign and domestic, affecting financial conditions and promotional activities in Maine and competing production regions. The quality of Maine potatoes in produce outlets in major Eastern U.S. markets is affected by production practices, handling methods, storage conditions, and quality maintenance and control practices. The organizational aspects of the marketing system at least partially determine the level of success in overall product marketing including the accurate and timely transmission of market information. Successful marketing also depends on the ability arid willingness of the industry to make use of such information in developing and implementing future marketing plans. Credit availability and policies in Maine and other regions are increasingly important as profit margins are reduced in times of low market prices and increasing production costs for all producers. In order to expand market demand for its product, industry promotional expenditures and activities may be inadequate.https://digitalcommons.library.umaine.edu/aes_bulletin/1115/thumbnail.jp

    Chandra/HETGS Spectroscopy of the Galactic Black Hole GX 339-4: A Relativistic Iron Line and Evidence for a Seyfert-like Warm Absorber

    Full text link
    We observed the Galactic black hole GX 339-4 with the Chandra High Energy Transmission Grating Spectrometer (HETGS) for 75 ksec during the decline of its 2002-2003 outburst. The sensitivity of this observation provides an unprecedented glimpse of a Galactic black hole at about a tenth of the luminosity of the outburst peak. The continuum spectrum is well described by a model consisting of multicolor disk blackbody (kT = 0.6 keV) and power-law (Gamma = 2.5) components. X-ray reflection models yield improved fits. A strong, relativistic Fe K-alpha emission line is revealed, indicating that the inner disk extends to the innermost stable circular orbit. The breadth of the line is sufficient to suggest that GX 339-4 may harbor a black hole with significant angular momentum. Absorption lines from H-like and He-like O, and He-like Ne and Mg are detected, as well as lines which are likely due to Ne II and Ne III. The measured line properties make it difficult to associate the absorption with the coronal phase of the interstellar medium. A scenario wherein the absorption lines are due to an intrinsic AGN-like warm-absorber geometry -- perhaps produced by a disk wind in an extended disk-dominated state -- may be more viable. We compare our results to Chandra observations of the Galactic black hole candidate XTE J1650-500, and discuss our findings in terms of prominent models for Galactic black hole accretion flows and connections to supermassive black holes.Comment: 20 pages, 11 postscript figure files (many in color), uses emulateapj.sty and apjfonts.sty, slightly expanded, accepted for publication in Ap

    Cryogenic Thermal Distortion Performance Characterization for the JWST ISIM Structure

    Get PDF
    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Structure is a precision optical metering structure for the JWST science instruments. Optomechanical performance requirements place stringent limits on the allowable thermal distortion of the metering structure between ambient and cryogenic operating temperature (~35 K). This paper focuses on thermal distortion testing and successful verification of performance requirements for the flight ISIM Structure. The ISIM Structure Cryoset Test was completed in Spring 2010 at NASA Goddard Space Flight Center in the Space Environment Simulator Chamber. During the test, the ISIM Structure was thermal cycled twice between ambient and cryogenic (~35 K) temperatures. Photogrammetry was used to measure the Structure in the ambient and cryogenic states for each cycle to assess both cooldown thermal distortion and repeatability. This paper will provide details on the post-processing of the metrology datasets completed to compare measurements with performance requirements

    Turbulence-induced cloud voids: observation and interpretation

    Get PDF
    The phenomenon of “cloud voids”, i.e., elongated volumes inside a cloud that are devoid of droplets, was observed with laser sheet photography in clouds at a mountain-top station. Two experimental cases, similar in turbulence conditions yet with diverse droplet size distributions and cloud void prevalence, are reported. A theoretical explanation is proposed based on the study of heavy inertial sedimenting particles inside a Burgers vortex. A general conclusion regarding void appearance is drawn from theoretical analysis. Numerical simulations of polydisperse droplet motion with realistic vortex parameters and Mie scattering visual effects accounted for can explain the presence of voids with sizes similar to that of the observed ones. Clustering and segregation effects in a vortex tube are discussed for reasonable cloud conditions

    Turbulence induced cloud voids: Observation and interpretation

    Get PDF
    The phenomenon of cloud voids, i.e., elongated volumes inside a cloud that are devoid of droplets, was observed with laser sheet photography in clouds at a mountain-top station. Two experimental cases, similar in turbulence conditions yet with diverse droplet size distributions and cloud void prevalence, are reported. A theoretical explanation is proposed based on the study of heavy inertial sedimenting particles inside a Burgers vortex. A general conclusion regarding void appearance is drawn from theoretical analysis. Numerical simulations of polydisperse droplet motion with realistic vortex parameters and Mie scattering visual effects accounted for can explain the presence of voids with sizes similar to that of the observed ones. Preferential concentration and sorting effects in a vortex tube are discussed for reasonable cloud conditions

    De novo loss of function mutations in KIAA2022 are associated with epilepsy and neurodevelopmental delay in females

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136530/1/cge12854_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136530/2/cge12854.pd

    The T2K Side Muon Range Detector

    Full text link
    The T2K experiment is a long baseline neutrino oscillation experiment aiming to observe the appearance of {\nu} e in a {\nu}{\mu} beam. The {\nu}{\mu} beam is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed with the 295 km distant Super- Kamiokande Detector and monitored by a suite of near detectors at 280m from the proton target. The near detectors include a magnetized off-axis detector (ND280) which measures the un-oscillated neutrino flux and neutrino cross sections. The present paper describes the outermost component of ND280 which is a side muon range detector (SMRD) composed of scintillation counters with embedded wavelength shifting fibers and Multi-Pixel Photon Counter read-out. The components, performance and response of the SMRD are presented.Comment: 13 pages, 19 figures v2: fixed several typos; fixed reference

    Altruism and the evolution of resource generalism and specialism

    Get PDF
    The evolution of resource specialism and generalism has attracted widespread interest. Evolutionary drivers affecting niche differentiation and resource specialization have focused on the role of trade-offs. Here, however, we explore how the role of cooperation, mediated through altruistic behaviors, and classic resource–consumer dynamics can influence the evolution of resource utilization. Using an evolutionary invasion approach, we investigate how critical thresholds in levels of altruism are needed for resource specialization to arise and be maintained. Differences between complementary (essential) and substitutable resources affect the evolution of resource generalists. The strength of resource preferences coupled with the levels of altruism are predicted to influence the evolution of generalism. Coupling appropriate evolutionary game and ecological dynamics lead to novel expectations in the feedbacks between social behaviors and population dynamics for understanding classic ecological problems
    corecore