162 research outputs found

    A modern study of HD166734: a massive supergiant system

    Full text link
    Aims. HD166734 is an eccentric eclipsing binary system composed of two supergiant O-type stars, orbiting with a 34.5-day period. In this rare configuration for such stars, the two objects mainly evolve independently, following single-star evolution so far. This system provides a chance to study the individual parameters of two supergiant massive stars and to derive their real masses. Methods. An intensive monitoring was dedicated to HD166734.We analyzed mid- and high-resolution optical spectra to constrain the orbital parameters of this system. We also studied its light curve for the first time, obtained in the VRI filters. Finally, we disentangled the spectra of the two stars and modeled them with the CMFGEN atmosphere code in order to determine the individual physical parameters. Results. HD166734 is a O7.5If+O9I(f) binary. We confirm its orbital period but we revise the other orbital parameters. In comparison to what we found in the literature, the system is more eccentric and, now, the hottest and the most luminous component is also the most massive one. The light curve exhibits only one eclipse and its analysis indicates an inclination of 63.0{\deg} ±\pm 2.7{\deg}. The photometric analysis provides us with a good estimation of the luminosities of the stars, and therefore their exact positions in the Hertzsprung-Russell diagram. The evolutionary and the spectroscopic masses show good agreement with the dynamical masses of 39.5 Msun for the primary and 33.5 Msun for the secondary, within the uncertainties. The two components are both enriched in helium and in nitrogen and depleted in carbon. In addition, the primary also shows a depletion in oxygen. Their surface abundances are however not different from those derived from single supergiant stars, yielding, for both components, an evolution similar to that of single stars.Comment: 13 pages, 13 figures, A&A accepte

    Evidence for a physically bound third component in HD 150136

    Get PDF
    Context. HD150136 is one of the nearest systems harbouring an O3 star. Although this system was for a long time considered as binary, more recent investigations have suggested the possible existence of a third component. Aims. We present a detailed analysis of HD 150136 to confirm the triple nature of this system. In addition, we investigate the physical properties of the individual components of this system. Methods. We analysed high-resolution, high signal-to-noise data collected through multi-epoch runs spread over ten years. We applied a disentangling program to refine the radial velocities and to obtain the individual spectra of each star. With the radial velocities, we computed the orbital solution of the inner system, and we describe the main properties of the orbit of the outer star such as the preliminary mass ratio, the eccentricity, and the orbital-period range. With the individual spectra, we determined the stellar parameters of each star by means of the CMFGEN atmosphere code. Results. We offer clear evidence that HD 150136 is a triple system composed of an O3V((f\ast))-3.5V((f+)), an O5.5-6V((f)), and an O6.5-7V((f)) star. The three stars are between 0-3 Myr old. We derive dynamical masses of about 64, 40, and 35 Msun for the primary, the secondary and the third components by assuming an inclination of 49{\deg}. It currently corresponds to one of the most massive systems in our galaxy. The third star moves with a period in the range of 2950 to 5500 d on an outer orbit with an eccentricity of at least 0.3. This discovery makes HD 150136 the first confirmed triple system with an O3 primary star. However, because of the long orbital period, our dataset is not sufficient to constrain the orbital solution of the tertiary component with high accuracy.Comment: 13 pages, 11 figures, accepted at A&

    APOGEE DR14/DR15 Abundances in the Inner Milky Way

    Full text link
    We present an overview of the distributions of 11 elemental abundances in the Milky Way's inner regions, as traced by APOGEE stars released as part of SDSS Data Release 14/15 (DR14/DR15), including O, Mg, Si, Ca, Cr, Mn, Co, Ni, Na, Al, and K. This sample spans ~4000 stars with R_GC<4 kpc, enabling the most comprehensive study to date of these abundances and their variations within the innermost few kiloparsecs of the Milky Way. We describe the observed abundance patterns ([X/Fe]-[Fe/H]), compare to previous literature results and to patterns in stars at the solar Galactic radius, and discuss possible trends with DR14/DR15 effective temperatures. We find that the position of the [Mg/Fe]-[Fe/H] "knee" is nearly constant with R_GC, indicating a well-mixed star-forming medium or high levels of radial migration in the early inner Galaxy. We quantify the linear correlation between pairs of elements in different subsamples of stars and find that these relationships vary; some abundance correlations are very similar between the alpha-rich and alpha-poor stars, but others differ significantly, suggesting variations in the metallicity dependencies of certain supernova yields. These empirical trends will form the basis for more detailed future explorations and for the refinement of model comparison metrics. That the inner Milky Way abundances appear dominated by a single chemical evolutionary track and that they extend to such high metallicities underscore the unique importance of this part of the Galaxy for constraining the ingredients of chemical evolution modeling and for improving our understanding of the evolution of the Galaxy as a whole.Comment: Submitted to AAS Journals; revised after referee repor

    Magnetic stars from a FEROS cool Ap star survey

    Get PDF
    New magnetic Ap stars with split Zeeman components are presented. These stars were discovered from observations with the Fibre-fed Extended Range Optical Spectrograph (FEROS) spectrograph at the European Southern Observatory (ESO) 2.2-m telescope. 15 new magnetic stars are analysed here. Several stars with very strong magnetic fields were found, including HD 70702 with a 15-kG magnetic field strength, and HD 168767 with a 16.5-kG magnetic field strength measured using split Zeeman components of spectral lines and by comparison with synthetic calculations. The physical parameters of the stars were estimated from photometric and spectroscopic data. Together with previously published results for stars with strong magnetic fields, the relationship between magnetic field strength and rotation period is discussed

    Evidence for a physically bound third component in HD 150136

    Full text link
    Context. HD150136 is one of the nearest systems harbouring an O3 star. Although this system was for a long time considered as binary, more recent investigations have suggested the possible existence of a third component. Aims. We present a detailed analysis of HD 150136 to confirm the triple nature of this system. In addition, we investigate the physical properties of the individual components of this system. Methods. We analysed high-resolution, high signal-to-noise data collected through multi-epoch runs spread over ten years. We applied a disentangling program to refine the radial velocities and to obtain the individual spectra of each star. With the radial velocities, we computed the orbital solution of the inner system, and we describe the main properties of the orbit of the outer star such as the preliminary mass ratio, the eccentricity, and the orbital-period range. With the individual spectra, we determined the stellar parameters of each star by means of the CMFGEN atmosphere code. Results. We offer clear evidence that HD 150136 is a triple system composed of an O3V((f\ast))-3.5V((f+)), an O5.5-6V((f)), and an O6.5-7V((f)) star. The three stars are between 0-3 Myr old. We derive dynamical masses of about 64, 40, and 35 Msun for the primary, the secondary and the third components by assuming an inclination of 49{\deg}. It currently corresponds to one of the most massive systems in our galaxy. The third star moves with a period in the range of 2950 to 5500 d on an outer orbit with an eccentricity of at least 0.3. This discovery makes HD 150136 the first confirmed triple system with an O3 primary star. However, because of the long orbital period, our dataset is not sufficient to constrain the orbital solution of the tertiary component with high accuracy.Comment: 13 pages, 11 figures, accepted at A&

    The Earth as an extrasolar transiting planet: Earth's atmospheric composition and thickness revealed by Lunar eclipse observations

    Get PDF
    An important goal within the quest for detecting an Earth-like extrasolar planet, will be to identify atmospheric gaseous bio-signatures. Observations of the light transmitted through the Earth's atmosphere, as for an extrasolar planet, will be the first step for future comparisons. We have completed observations of the Earth during a Lunar eclipse, a unique situation similar to that of a transiting planet. We aim at showing what species could be detected in its atmosphere at optical wavelengths, where a lot of photons are available in the masked stellar light. We present observations of the 2008 August 16 Moon eclipse performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence. Locating the spectrograph fibers in the penumbra of the eclipse, the Moon irradiance is then a mix of direct, unabsorbed Sun light and solar light that has passed through the Earth's limb. This mixture essentially reproduces what is recorded during the transit of an extrasolar planet. We report here the clear detection of several Earth atmospheric compounds in the transmission spectra, such as ozone, molecular oxygen, and neutral sodium as well as molecular nitrogen and oxygen through the Rayleigh signature. Moreover, we present a method that allows us to derive the thickness of the atmosphere versus the wavelength for penumbra eclipse observations. We quantitatively evaluate the altitude at which the atmosphere becomes transparent for important species like molecular oxygen and ozone, two species thought to be tightly linked to the presence of life. The molecular detections presented here are an encouraging first attempt, necessary to better prepare for the future of extremely-large telescopes and transiting Earth-like planets. Instruments like SOPHIE will be mandatory when characterizing the atmospheres of transiting Earth-like planets from the ground and searching for bio-marker signatures.Comment: 15 pages, 14 figures, 2 tables. Accepted for publication in Astronomy and Astrophysic

    TOI-150: A transiting hot Jupiter in the TESS southern CVZ

    Full text link
    We report the detection of a hot Jupiter ($M_{p}=1.75_{-0.17}^{+0.14}\ M_{J},, R_{p}=1.38\pm0.04\ R_{J})orbitingamiddleagedstar() orbiting a middle-aged star (\log g=4.152^{+0.030}_{-0.043})intheTransitingExoplanetSurveySatellite(TESS)southerncontinuousviewingzone() in the Transiting Exoplanet Survey Satellite (TESS) southern continuous viewing zone (\beta=-79.59^{\circ}$). We confirm the planetary nature of the candidate TOI-150.01 using radial velocity observations from the APOGEE-2 South spectrograph and the Carnegie Planet Finder Spectrograph, ground-based photometric observations from the robotic Three-hundred MilliMeter Telescope at Las Campanas Observatory, and Gaia distance estimates. Large-scale spectroscopic surveys, such as APOGEE/APOGEE-2, now have sufficient radial velocity precision to directly confirm the signature of giant exoplanets, making such data sets valuable tools in the TESS era. Continual monitoring of TOI-150 by TESS can reveal additional planets and subsequent observations can provide insights into planetary system architectures involving a hot Jupiter around a star about halfway through its main-sequence life.Comment: 13 pages, 3 figures, 2 tables, accepted to ApJ
    corecore