154 research outputs found
Impact of carbohydrate nutrition on exercise metabolism and performance
Carbohydrate (CHO) ingestion before and during exercise has consistently been reported to increase endurance exercise capacity/performance but the mechanisms responsible and optimal dose required are still debated. Feeding CHO is believed to spare muscle glycogen, spare liver glycogen, have central neural actions, and peripheral neural effects. A combination of these mechanisms is likely and the nature of the exercise performed is key when interpreting these data. Research on the optimal dose of CHO to improve performance over a range of exercise durations and intensities has been a recent focus. Optimal doses suggested from these studies cover a range (30-80 g•h-1) that likely reflects exercise task, training status, and/or individual variation in response
Reproductive performance of resident and migrant males, females and pairs in a partially migratory bird
We thank everyone from the Centre for Ecology & Hydrology (CEH) who contributed to data collection, and Scottish Natural Heritage for access to the Isle of May National Nature Reserve. We thank the Scottish Ornithologists’ Club (SOC) for their support, and all volunteer observers, particularly Raymond Duncan, Moray Souter and Bob Swann. HG was funded by a Natural Environment Research Council (NERC) CASE studentship supported by CEH and SOC, FD, SW, MPH, MN and SB were funded by NERC and the Joint Nature Conservation Committee, and JMR was part-funded by the Royal Society. Finally, we thank the Associate Editor and two reviewers for constructive comments on the manuscript. The data are available from the Dryad Digital Repository https://doi.org/10.5061/dryad.532j0 (Grist et al., 2017)Peer reviewedPublisher PD
The need for year-specific correction factors (k values) when converting counts of individual common guillemots Uria aalge to breeding pairs
Long-term studies at two Scottish colonies show that the k value used to convert counts of individual Common Guillemots Uria aalge to pairs has changed substantially in the last 15 years due to decreases in survival and colony attendance. Any future wide-scale census of this species needs to collect concurrent k values if counts of individual birds are to be used to determine changes in breeding populations since the previous survey
Extraction of High-Value Chemicals from Plants for Technical and Medical Applications
Plants produce a variety of high-value chemicals (e.g., secondary metabolites) which have a plethora of biological activities, which may be utilised in many facets of industry (e.g., agrisciences, cosmetics, drugs, neutraceuticals, household products, etc.). Exposure to various different environments, as well as their treatment (e.g., exposure to chemicals), can influence the chemical makeup of these plants and, in turn, which chemicals will be prevalent within them. Essential oils (EOs) usually have complex compositions (>300 organic compounds, e.g., alkaloids, flavonoids, phenolic acids, saponins and terpenes) and are obtained from botanically defined plant raw materials by dry/steam distillation or a suitable mechanical process (without heating). In certain cases, an antioxidant may be added to the EO (EOs are produced by more than 17,500 species of plants, but only ca. 250 EOs are commercially available). The interesting bioactivity of the chemicals produced by plants renders them high in value, motivating investment in their production, extraction and analysis. Traditional methods for effectively extracting plant-derived biomolecules include cold pressing and hydro/steam distillation; newer methods include solvent/Soxhlet extractions and sustainable processes that reduce waste, decrease processing times and deliver competitive yields, examples of which include microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), subcritical water extraction (SWE) and supercritical CO2 extraction (scCO2). Once extracted, analytical techniques such as chromatography and mass spectrometry may be used to analyse the contents of the high-value extracts within a given feedstock. The bioactive components, which can be used in a variety of formulations and products (e.g., displaying anti-aging, antibacterial, anticancer, anti-depressive, antifungal, anti-inflammatory, antioxidant, antiparasitic, antiviral and anti-stress properties), are biorenewable high-value chemicals
Modelling and mapping how common guillemots balance their energy budgets over a full annual cycle
The ability of individual animals to balance their energy budgets throughout the annual cycle is important for their survival, reproduction and population dynamics. However, the annual cycles of many wild, mobile animals are difficult to observe and our understanding of how individuals balance their energy budgets throughout the year therefore remains poor.
We developed a hierarchical Bayesian state-space model to investigate how key components of animal energy budgets (namely individual energy gain and storage) varied in space and time. Our model used biologger-derived estimates of time-activity budgets, locations and energy expenditure to infer year-round time series of energy income and reserves. The model accounted for seasonality in environmental drivers such as sea surface temperature and daylength, allowing us to identify times and locations of high energy gain.
Our study system was a population of common guillemots Uria aalge breeding at a western North Sea colony. These seabirds manage their energy budgets by adjusting their behaviour and accumulating fat reserves. However, typically during severe weather conditions, birds can experience an energy deficit over a sustained period, leading to starvation and large-scale mortality events.
We show that guillemot energy gain varied in both time and space. Estimates of guillemot body mass varied throughout the annual cycle and birds periodically experienced losses in mass. Mass losses were likely to have either been adaptive, or due to energetic bottlenecks, the latter leading to increased susceptibility to mortality. Guillemots tended to be lighter towards the edge of their spatial distribution.
We describe a framework that combines biologging data, time-activity budget analysis and Bayesian state-space modelling to identify times and locations of high energetic reward or potential energetic bottlenecks in a wild animal population. Our approach can be extended to address ecological and conservation-driven questions that were previously unanswerable due to logistical complexities in collecting data on wild, mobile animals across full annual cycles
Qualitative impact assessment of land management interventions on ecosystem services (“QEIA”). Report-3 theme-4: water
This project assessed the impacts of 741 potential land management actions, suitable for agricultural land in England, on the Farming & Countryside Programme’s Environmental Objectives (and therefore Environment Act targets and climate commitments) through 53 relevant environmental and cultural service indicators.
The project used a combination of expert opinion and rapid evidence reviews, which included 1000+ pages of evidence in 10 separate reports with reference to over 2400 published studies, and an Integrated Assessment comprising expert-derived qualitative impact scores.
The project has ensured that ELM schemes are evidence-based, offer good value for money, and contribute to SoS priorities for farming
Recommended from our members
Transpolar voltage and polar cap flux during the substorm cycle and steady convection events
Transpolar voltages observed during traversals of the polar cap by the Defense Meteorological Satellite Program (DMSP) F-13 spacecraft during 2001 are analyzed using the expanding-contracting polar cap model of ionospheric convection. Each of the 10,216 passes is classified by its substorm phase or as a steady convection event (SCE) by inspection of the AE indices. For all phases, we detect a contribution to the transpolar voltage by reconnection in both the dayside magnetopause and in the crosstail current sheet. Detection of the IMF influence is 97% certain during quiet intervals and >99% certain during substorm/SCE growth phases but falls to 75% in substorm expansion phases: It is only 27% during SCEs. Detection of the influence of the nightside voltage is only 19% certain during growth phases, rising during expansion phases to a peak of 96% in recovery phases: During SCEs, it is >99%. The voltage during SCEs is dominated by the nightside, not the dayside, reconnection. On average, substorm expansion phases halt the growth phase rise in polar cap flux rather than reversing it. The main destruction of the excess open flux takes place during the 6- to 10-hour interval after the recovery phase (as seen in AE) and at a rate which is relatively independent of polar cap flux because the NENL has by then retreated to the far tail. The best estimate of the voltage associated with viscous-like transfer of closed field lines into the tail is around 10 kV
Earlier and more frequent occupation of breeding sites during the non‐breeding season increases breeding success in a colonial seabird
Competition for high-quality breeding sites in colonial species is often intense, such that individuals may invest considerable time in site occupancy even outside the breeding season. The site defense hypothesis predicts that high-quality sites will be occupied earlier and more frequently, consequently those sites will benefit from earlier and more successful breeding. However, few studies relate non-breeding season occupancy to subsequent breeding performance limiting our understanding of the potential life-history benefits of this behavior. Here, we test how site occupancy in the non-breeding season related to site quality, breeding timing, and breeding success in a population of common guillemots Uria aalge, an abundant and well-studied colonially breeding seabird. Using time-lapse photography, we recorded occupancy at breeding sites from October to March over three consecutive non-breeding seasons. We then monitored the successive breeding timing (lay date) and breeding success at each site. On average, sites were first occupied on the 27th October ± 11.7 days (mean ± SD), subsequently occupied on 46 ± 18% of survey days and for 55 ± 15% of the time when at least one site was occupied. Higher-quality sites, sites with higher average historic breeding success, were occupied earlier, more frequently and for longer daily durations thereafter. Laying was earlier at sites that were occupied more frequently and sites occupied earlier were more successful, supporting the site defense hypothesis. A path analysis showed that the return date had a greater or equal effect on breeding success as lay date. Pair level occupancy had no effect on breeding timing or success. The clear effect of non-breeding occupancy of breeding sites on breeding timing and success highlights the benefits of this behavior on demography in this population and the importance of access to breeding sites outside the breeding season in systems where competition for high-quality sites is intense
- …