260 research outputs found

    Structured reporting of computed tomography in the staging of colon cancer: a Delphi consensus proposal

    Get PDF
    Background: Structured reporting (SR) in radiology is becoming increasingly necessary and has been recognized recently by major scientific societies. This study aims to build structured CT-based reports in colon cancer during the staging phase in order to improve communication between the radiologist, members of multidisciplinary teams and patients. Materials and methods: A panel of expert radiologists, members of the Italian Society of Medical and Interventional Radiology, was established. A modified Delphi process was used to develop the SR and to assess a level of agreement for all report sections. Cronbach’s alpha (Cα) correlation coefficient was used to assess internal consistency for each section and to measure quality analysis according to the average inter-item correlation. Results: The final SR version was built by including n = 18 items in the “Patient Clinical Data” section, n = 7 items in the “Clinical Evaluation” section, n = 9 items in the “Imaging Protocol” section and n = 29 items in the “Report” section. Overall, 63 items were included in the final version of the SR. Both in the first and second round, all sections received a higher than good rating: a mean value of 4.6 and range 3.6–4.9 in the first round; a mean value of 5.0 and range 4.9–5 in the second round. In the first round, Cronbach’s alpha (Cα) correlation coefficient was a questionable 0.61. In the first round, the overall mean score of the experts and the sum of scores for the structured report were 4.6 (range 1–5) and 1111 (mean value 74.07, STD 4.85), respectively. In the second round, Cronbach’s alpha (Cα) correlation coefficient was an acceptable 0.70. In the second round, the overall mean score of the experts and the sum of score for structured report were 4.9 (range 4–5) and 1108 (mean value 79.14, STD 1.83), respectively. The overall mean score obtained by the experts in the second round was higher than the overall mean score of the first round, with a lower standard deviation value to underline greater agreement among the experts for the structured report reached in this round. Conclusions: A wide implementation of SR is of critical importance in order to offer referring physicians and patients optimum quality of service and to provide researchers with the best quality data in the context of big data exploitation of available clinical data. Implementation is a complex procedure, requiring mature technology to successfully address the multiple challenges of user-friendliness, organization and interoperability

    KLEVER: An experiment to measure BR(KLπ0ννˉK_L\to\pi^0\nu\bar{\nu}) at the CERN SPS

    Full text link
    Precise measurements of the branching ratios for the flavor-changing neutral current decays KπννˉK\to\pi\nu\bar{\nu} can provide unique constraints on CKM unitarity and, potentially, evidence for new physics. It is important to measure both decay modes, K+π+ννˉK^+\to\pi^+\nu\bar{\nu} and KLπ0ννˉK_L\to\pi^0\nu\bar{\nu}, since different new physics models affect the rates for each channel differently. The goal of the NA62 experiment at the CERN SPS is to measure the BR for the charged channel to within 10%. For the neutral channel, the BR has never been measured. We are designing the KLEVER experiment to measure BR(KLπ0ννˉK_L\to\pi^0\nu\bar{\nu}) to \sim20% using a high-energy neutral beam at the CERN SPS starting in LHC Run 4. The boost from the high-energy beam facilitates the rejection of background channels such as KLπ0π0K_L\to\pi^0\pi^0 by detection of the additional photons in the final state. On the other hand, the layout poses particular challenges for the design of the small-angle vetoes, which must reject photons from KLK_L decays escaping through the beam exit amidst an intense background from soft photons and neutrons in the beam. Background from Λnπ0\Lambda \to n\pi^0 decays in the beam must also be kept under control. We present findings from our design studies for the beamline and experiment, with an emphasis on the challenges faced and the potential sensitivity for the measurement of BR(KLπ0ννˉK_L\to\pi^0\nu\bar{\nu}).Comment: 13 pages, 4 figures. Submitted as input to the 2020 update of the European Strategy for Particle Physics. v2: Included authors unintentionally omitted in v

    Assessing Trustworthy AI in times of COVID-19. Deep Learning for predicting a multi-regional score conveying the degree of lung compromise in COVID-19 patients

    Get PDF
    Abstract—The paper's main contributions are twofold: to demonstrate how to apply the general European Union’s High-Level Expert Group’s (EU HLEG) guidelines for trustworthy AI in practice for the domain of healthcare; and to investigate the research question of what does “trustworthy AI” mean at the time of the COVID-19 pandemic. To this end, we present the results of a post-hoc self-assessment to evaluate the trustworthiness of an AI system for predicting a multi-regional score conveying the degree of lung compromise in COVID-19 patients, developed and verified by an interdisciplinary team with members from academia, public hospitals, and industry in time of pandemic. The AI system aims to help radiologists to estimate and communicate the severity of damage in a patient’s lung from Chest X-rays. It has been experimentally deployed in the radiology department of the ASST Spedali Civili clinic in Brescia (Italy) since December 2020 during pandemic time. The methodology we have applied for our post-hoc assessment, called Z-Inspection®, uses socio-technical scenarios to identify ethical, technical and domain-specific issues in the use of the AI system in the context of the pandemic.</p

    Performance of the NA62 trigger system

    Get PDF
    The NA62 experiment at CERN targets the measurement of the ultra-rare K+ -&gt;pi+ nu nu decay, and carries out a broad physics programme that includes probes for symmetry violations and searches for exotic particles. Data were collected in 2016–2018 using a multi-level trigger system, which is described highlighting performance studies based on 2018 data

    Physics beyond the standard model with kaons at NA62

    Get PDF
    The NA62 experiment at CERN Super Proton Synchrotron was designed to measure BR(K+ \u2192 \u3c0+\u3bdv\u304) with an in-fight technique, never used before for this measurement. This decay is characterised by a very precise prediction in the Standard Model. Its branching ratio, which is expected to be less than 10-10, is one of the best candidates to indicate indirect effects of new physics beyond SM at the highest mass scales. NA62 result on K+ \u2192 \u3c0+\u3bdv\u304 from the full 2016 data set is described. Also a search for an invisible dark photon A\u2032 has been performed, exploiting the efficient photon-veto capability and high resolution tracking of the NA62. The signal stems from the chain K+ \u2192 \u3c0+\u3c00 followed by \u3c00 \u2192 A\u2032\u3b3. No significant statistical excess has been identified. Upper limits on the dark photon coupling to the ordinary photon as a function of the dark photon mass have been set, improving on the previous limits over the mass range 60 - 110 MeV/c2

    Search for π⁰ decays to invisible particles

    Get PDF
    The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 109 tagged π0 mesons from K+ → π+π0(γ), searching for the decay of the π0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4.4 × 10−9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit on the branching ratio for the decay K+ → π+X, where X is a particle escaping detection with mass in the range 0.110–0.155 GeV/c2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson

    Searches for lepton number violating K+ decays

    Get PDF
    The NA62 experiment at CERN reports a search for the lepton number violating decays K+→π−e+e+ and K+→π−μ+μ+ using a data sample collected in 2017. No signals are observed, and upper limits on the branching fractions of these decays of 2.2 x 10^-10 and 4.2 x 10^-11 are obtained, respectively, at 90% confidence level. These upper limits improve on previously reported measurements by factors of 3 and 2, respectively

    Recent results in kaon physics

    Get PDF
    A review of the present experimental status of the K → πνν (Kπνν) and other kaon decay analyses at experiments NA62 (CERN) and KOTO (J-PARC) is given. The Kπνν decay is one of the best candidates among the rare meson decays for indirect searches for new physics in the mass ranges complementary to those accessible by current accelerators. The Standard Model (SM) prediction of the branching fraction (B) of the Kπνν decay is lower than 10−10 in both neutral and charged modes. The NA62 experiment aims to measure the B of the charged mode with better than 10% precision. Three candidate events, compatible with the SM prediction, have been observed from a sample of 2.12×1012 K+ decays collected in 2016 and 2017 by NA62. More than twice the statistics is available in the 2018 dataset currently being analysed. The KOTO experiment in Japan aims to measure B(KL → π0νν) using a technique similar to NA62, but with much lower momentum. In the first dataset taken in 2015 zero signal candidate events were observed. The current status of the analysis of the 2016-2018 dataset with 1.4 times more data is presented. Finally, the most recent results of other physics analyses at the NA62 experiment are summarised

    Measurement of the very rare K + → π+νν¯ decay

    Get PDF
    The NA62 experiment reports the branching ratio measurement BR(K+→π+νν¯)=(10.6−3.4+4.0|stat±0.9syst)×10−11 at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016–2018. This provides evidence for the very rare K+→π+νν¯ decay, observed with a significance of 3.4σ. The experiment achieves a single event sensitivity of (0.839 ± 0.054) × 10−11, corresponding to 10.0 events assuming the Standard Model branching ratio of (8.4 ± 1.0) × 10−11. This measurement is also used to set limits on BR(K+→ π+X), where X is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample
    corecore