373 research outputs found
Studies on the respiratory pigment of Urechis eggs
Experiments previously reported (1) have shown that the eggs of the Pacific marine worm, Urechis caupo, contain a reversible oxidation-reduction pigment. The pigment, called urechrome, is autoxidizable and changes color from red to yellow on oxidation. It is soluble in water (reduced form insoluble below pH 5) and in acidified methanol, but insoluble in ether, acetone, chloroform, and neutral alcohol. Evidence for participation of the pigment in cellular respiration has been previously given
Frictional dissipation of polymeric solids vs interfacial glass transition
We present single contact friction experiments between a glassy polymer and
smooth silica substrates grafted with alkylsilane layers of different coverage
densities and morphologies. This allows us to adjust the polymer/substrate
interaction strength. We find that, when going from weak to strong interaction,
the response of the interfacial junction where shear localizes evolves from
that of a highly viscous threshold fluid to that of a plastically deformed
glassy solid. This we analyse as resulting from an interaction-induced
``interfacial glass transition'' helped by pressure
Magic angles and cross-hatching instability in hydrogel fracture
The full 2D analysis of roughness profiles of fracture surfaces resulting
from quasi-static crack propagation in gelatin gels reveals an original
behavior characterized by (i) strong anisotropy with maximum roughness at
-independent symmetry-preserving angles, (ii) a sub-critical instability
leading, below a critical velocity, to a cross-hatched regime due to straight
macrosteps drifting at the same magic angles and nucleated on crack-pinning
network inhomogeneities. Step height values are determined by the width of the
strain-hardened zone, governed by the elastic crack blunting characteristic of
soft solids with breaking stresses much larger that low strain moduli
Friction Laws for Elastic Nano-Scale Contacts
The effect of surface curvature on the law relating frictional forces F with
normal load L is investigated by molecular dynamics simulations as a function
of surface symmetry, adhesion, and contamination. Curved, non-adhering, dry,
commensurate surfaces show a linear dependency, F proportional to L, similar to
dry flat commensurate or amorphous surfaces and macroscopic surfaces. In
contrast, curved, non-adhering, dry, amorphous surfaces show F proportional to
L^(2/3) similar to friction force microscopes. In our model, adhesive effects
are most adequately described by the Hertz plus offset model, as the
simulations are confined to small contact radii. Curved lubricated or
contaminated surfaces show again different behavior; details depend on how much
of the contaminant gets squeezed out of the contact. Also, it is seen that the
friction force in the lubricated case is mainly due to atoms at the entrance of
the tip.Comment: 7 pages, 5 figures, submitted to Europhys. Let
Mott transition and collective charge pinning in electron doped Sr2IrO4
We studied the in-plane dynamic and static charge conductivity of electron
doped Sr2IrO4 using optical spectroscopy and DC transport measurements. The
optical conductivity indicates that the pristine material is an indirect
semiconductor with a direct Mott-gap of 0.55 eV. Upon substitution of 2% La per
formula unit the Mott-gap is suppressed except in a small fraction of the
material (15%) where the gap survives, and overall the material remains
insulating. Instead of a zero energy mode (or Drude peak) we observe a soft
collective mode (SCM) with a broad maximum at 40 meV. Doping to 10% increases
the strength of the SCM, and a zero-energy mode occurs together with metallic
DC conductivity. Further increase of the La substitution doesn't change the
spectral weight integral up to 3 eV. It does however result in a transfer of
the SCM spectral weight to the zero-energy mode, with a corresponding reduction
of the DC resistivity for all temperatures from 4 to 300 K. The presence of a
zero-energy mode signals that at least part of the Fermi surface remains
ungapped at low temperatures, whereas the SCM appears to be caused by pinning a
collective frozen state involving part of the doped electrons
Coupling Of The B1g Phonon To The Anti-Nodal Electronic States of Bi2Sr2Ca0.92Y0.08Cu2O(8+delta)
Angle-resolved photoemission spectroscopy (ARPES) on optimally doped
Bi2Sr2Ca0.92Y0.08Cu2O(8+delta) uncovers a coupling of the electronic bands to a
40 meV mode in an extended k-space region away from the nodal direction,
leading to a new interpretation of the strong renormalization of the electronic
structure seen in Bi2212. Phenomenological agreements with neutron and Raman
experiments suggest that this mode is the B1g oxygen bond-buckling phonon. A
theoretical calculation based on this assignment reproduces the electronic
renormalization seen in the data.Comment: 4 Pages, 4 Figures Updated Figures and Tex
Rubber friction on smooth surfaces
We study the sliding friction for viscoelastic solids, e.g., rubber, on hard
flat substrate surfaces. We consider first the fluctuating shear stress inside
a viscoelastic solid which results from the thermal motion of the atoms or
molecules in the solid. At the nanoscale the thermal fluctuations are very
strong and give rise to stress fluctuations in the MPa-range, which is similar
to the depinning stresses which typically occur at solid-rubber interfaces,
indicating the crucial importance of thermal fluctuations for rubber friction
on smooth surfaces. We develop a detailed model which takes into account the
influence of thermal fluctuations on the depinning of small contact patches
(stress domains) at the rubber-substrate interface. The theory predicts that
the velocity dependence of the macroscopic shear stress has a bell-shaped f
orm, and that the low-velocity side exhibits the same temperature dependence as
the bulk viscoelastic modulus, in qualitative agreement with experimental data.
Finally, we discuss the influence of small-amplitude substrate roughness on
rubber sliding friction.Comment: 14 pages, 16 figure
Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductor
A recent highlight in the study of high-Tc superconductors is the observation
of band renormalization / self-energy effects on the quasiparticles. This is
seen in the form of kinks in the quasiparticle dispersions as measured by
photoemission and interpreted as signatures of collective bosonic modes
coupling to the electrons. Here we compare for the first time the self-energies
in an optimally doped and strongly overdoped, non-superconducting single-layer
Bi-cuprate (Bi2Sr2CuO6). Besides the appearance of a strong overall weakening,
we also find that weight of the self-energy in the overdoped system shifts to
higher energies. We present evidence that this is related to a change in the
coupling to c-axis phonons due to the rapid change of the c-axis screening in
this doping range.Comment: 4 pages, 3 figure
Atomically precise lateral modulation of a two-dimensional electron liquid in anatase TiO2 thin films
Engineering the electronic band structure of two-dimensional electron liquids
(2DELs) confined at the surface or interface of transition metal oxides is key
to unlocking their full potential. Here we describe a new approach to tailoring
the electronic structure of an oxide surface 2DEL demonstrating the lateral
modulation of electronic states with atomic scale precision on an unprecedented
length scale comparable to the Fermi wavelength. To this end, we use pulsed
laser deposition to grow anatase TiO2 films terminated by a (1 x 4) in-plane
surface reconstruction. Employing photo-stimulated chemical surface doping we
induce 2DELs with tunable carrier densities that are confined within a few TiO2
layers below the surface. Subsequent in-situ angle resolved photoemission
experiments demonstrate that the (1 x 4) surface reconstruction provides a
periodic lateral perturbation of the electron liquid. This causes strong
backfolding of the electronic bands, opening of unidirectional gaps and a
saddle point singularity in the density of states near the chemical potential
- …