73 research outputs found

    Social odors conveying dominance and reproductive information induce rapid physiological and neuromolecular changes in a cichlid fish

    Get PDF
    Background: Social plasticity is a pervasive feature of animal behavior. Animals adjust the expression of their social behavior to the daily changes in social life and to transitions between life-history stages, and this ability has an impact in their Darwinian fitness. This behavioral plasticity may be achieved either by rewiring or by biochemically switching nodes of the neural network underlying social behavior in response to perceived social information. Independent of the proximate mechanisms, at the neuromolecular level social plasticity relies on the regulation of gene expression, such that different neurogenomic states emerge in response to different social stimuli and the switches between states are orchestrated by signaling pathways that interface the social environment and the genotype. Here, we test this hypothesis by characterizing the changes in the brain profile of gene expression in response to social odors in the Mozambique Tilapia, Oreochromis mossambicus. This species has a rich repertoire of social behaviors during which both visual and chemical information are conveyed to conspecifics. Specifically, dominant males increase their urination frequency during agonist encounters and during courtship to convey chemical information reflecting their dominance status. Results: We recorded electro-olfactograms to test the extent to which the olfactory epithelium can discriminate between olfactory information from dominant and subordinate males as well as from pre- and post-spawning females. We then performed a genome-scale gene expression analysis of the olfactory bulb and the olfactory cortex homolog in order to identify the neuromolecular systems involved in processing these social stimuli. Conclusions: Our results show that different olfactory stimuli from conspecifics' have a major impact in the brain transcriptome, with different chemical social cues eliciting specific patterns of gene expression in the brain. These results confirm the role of rapid changes in gene expression in the brain as a genomic mechanism underlying behavioral plasticity and reinforce the idea of an extensive transcriptional plasticity of cichlid genomes, especially in response to rapid changes in their social environment.Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) [EXCL/BIA-ANM/0549/2012, Pest-OE/MAR/UI0331/2011]; Dwight W. and Blanche Faye Reeder Centennial Fellowship in Systematic and Evolutionary Biology; Institute for Cellular and Molecular Biology Fellowship; FCTinfo:eu-repo/semantics/publishedVersio

    Molecular Correlates of Social Dominance: A Novel Role for Ependymin in Aggression

    Get PDF
    Theoretical and empirical studies have sought to explain the formation and maintenance of social relationships within groups. The resulting dominance hierarchies have significant fitness and survival consequences dependent upon social status. We hypothesised that each position or rank within a group has a distinctive brain gene expression profile that correlates with behavioural phenotype. Furthermore, transitions in rank position should determine which genes shift in expression concurrent with the new dominance status. We used a custom cDNA microarray to profile brain transcript expression in a model species, the rainbow trout, which forms tractable linear hierarchies. Dominant, subdominant and submissive individuals had distinctive transcript profiles with 110 gene probes identified using conservative statistical analyses. By removing the dominant, we characterised the changes in transcript expression in sub-dominant individuals that became dominant demonstrating that the molecular transition occurred within 48 hours. A strong, novel candidate gene, ependymin, which was highly expressed in both the transcript and protein in subdominants relative to dominants, was tested further. Using antibody injection to inactivate ependymin in pairs of dominant and subdominant zebrafish, the subdominant fish exhibited a substantial increase in aggression in parallel with an enhanced competitive ability. This is the first study to characterise the molecular signatures of dominance status within groups and the first to implicate ependymin in control of aggressive behaviour. It also provides evidence for indirect genetic effect models in which genotype/phenotype of an individual is influenced by conspecific interactions within a group. The variation in the molecular profile of each individual within a group may offer a new explanation of intraspecific variation in gene expression within undefined groups of animals and provides new candidates for empirical study

    Aristotelian Essentialism: Essence in the Age of Evolution

    Get PDF
    The advent of contemporary evolutionary theory ushered in the eventual decline of Aristotelian Essentialism (Æ) – for it is widely assumed that essence does not, and cannot have any proper place in the age of evolution. This paper argues that this assumption is a mistake: if Æ can be suitably evolved, it need not face extinction. In it, I claim that if that theory’s fundamental ontology consists of dispositional properties, and if its characteristic metaphysical machinery is interpreted within the framework of contemporary evolutionary developmental biology, an evolved essentialism is available. The reformulated theory of Æ offered in this paper not only fails to fall prey to the typical collection of criticisms, but is also independently both theoretically and empirically plausible. The paper contends that, properly understood, essence belongs in the age of evolution

    FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila

    Get PDF
    Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in response to environmental conditions, is biologically ubiquitous, and yet almost nothing is known of the developmental mechanisms that regulate the extent of a plastic response. In particular, it is unclear why some traits or individuals are highly sensitive to an environmental variable while other traits or individuals are less so. Here we elucidate the developmental mechanisms that regulate the expression of a particularly important form of phenotypic plasticity: the effect of developmental nutrition on organ size. In all animals, developmental nutrition is signaled to growing organs via the insulin-signaling pathway. Drosophila organs differ in their size response to developmental nutrition and this reflects differences in organ-specific insulin-sensitivity. We show that this variation in insulin-sensitivity is regulated at the level of the forkhead transcription factor FOXO, a negative growth regulator that is activated when nutrition and insulin signaling are low. Individual organs appear to attenuate growth suppression in response to low nutrition through an organ-specific reduction in FOXO expression, thereby reducing their nutritional plasticity. We show that FOXO expression is necessary to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity, while organ-autonomous changes in FOXO expression are sufficient to autonomously alter an organ's nutritional-plasticity and insulin-sensitivity. These data identify a gene (FOXO) that modulates a plastic response through variation in its expression. FOXO is recognized as a key player in the response of size, immunity, and longevity to changes in developmental nutrition, stress, and oxygen levels. FOXO may therefore act as a more general regulator of plasticity. These data indicate that the extent of phenotypic plasticity may be modified by changes in the expression of genes involved in signaling environmental information to developmental processes

    Brain Transcriptional Profiles of Male Alternative Reproductive Tactics and Females in Bluegill Sunfish

    Get PDF
    We thank Scott Colborne for his help in collecting bluegill, Dave Bridges for providing the R script to convert Ensemble IDs to stickleback homologs, and David Winter and Jeramia Ory for providing Python script used in the bioinformatics analyses. We thank Doug Haywick for producing Fig 1. We also thank Shawn Garner, Tim Hain, Lauren Kordonowy, and Lindsay Havens, and three anonymous reviewers for helpful comments on the manuscript.Bluegill sunfish (Lepomis macrochirus) are one of the classic systems for studying male alternative reproductive tactics (ARTs) in teleost fishes. In this species, there are two distinct life histories: parental and cuckolder, encompassing three reproductive tactics, parental, satellite, and sneaker. The parental life history is fixed, whereas individuals who enter the cuckolder life history transition from sneaker to satellite tactic as they grow. For this study, we used RNAseq to characterize the brain transcriptome of the three male tactics and females during spawning to identify gene ontology (GO) categories and potential candidate genes associated with each tactic. We found that sneaker males had higher levels of gene expression differentiation compared to the other two male tactics. Sneaker males also had higher expression in ionotropic glutamate receptor genes, specifically AMPA receptors, compared to other males, which may be important for increased spatial working memory while attempting to cuckold parental males at their nests. Larger differences in gene expression also occurred among male tactics than between males and females. We found significant expression differences in several candidate genes that were previously identified in other species with ARTs and suggest a previously undescribed role for cAMP-responsive element modulator (crem) in influencing parental male behaviors during spawning.Yeshttp://www.plosone.org/static/editorial#pee

    Physiological and genetic basis for variation in migratory behavior in the three-spined stickleback, Gasterosteus aculeatus

    Full text link

    Wild guppies from populations exposed to higher predation risk exhibit greater vasotocin brain gene expression

    No full text
    Intraspecific variation in social behaviour is often observed among animal populations. Local predation risk can be a key driver of these differences, with populations that are exposed to greater threat typically showing greater aggregation and reduced intraspecific aggression. The Trinidadian guppy, Poecilia reticulata, is found in populations that vary dramatically in predation risk and show greater grouping and reduced agonism in high-predation populations compared to low-predation populations. The neurohormonal mechanisms that underpin these differences in behaviour across populations remain unknown and elucidating these mechanisms may help us to understand the evolution of behavioural diversity in this species. We predicted that guppies naturally exposed to higher predation risk would show greater expression of the isotocin system and reduced expression of the vasotocin system when compared to low-predation fish, because these peptides are thought to promote gregariousness and aggressivity respectively. We collected guppies of both sexes from high- and low-predation sites, replicated in two different Trinidadian rivers, and measured the brain gene expression of isotocin and vasotocin along with their central receptors. Contrary to our prediction, we found that high-predation guppies showed greater expression of vasotocin, while we did not find evidence that the populations differed in isotocin expression, nor in the expression of the receptors. These results support the hypothesis that vasotocin may act as a neural substrate for social variation in fishes but call into question generalisations about its specific role across species
    • …
    corecore