67 research outputs found

    The Metallicity of the Red Giant Branch in the Disk of NGC 6822

    Full text link
    Deep J, H, and K' images obtained with the Canada-France-Hawaii Telescope adaptive optics system are used to investigate the metallicity of red giant branch (RGB) stars in three fields in the disk of the Local Group dwarf irregular galaxy NGC 6822. The slope of the RGB on the (K, J-K) color-magnitude diagrams indicates that = -1.0 +/- 0.3. The locus of the RGB is bluer than that of globular clusters with the same RGB slope, by an amount that is consistent with the majority of RGB stars in these fields having an age near 3 Gyr. It is demonstrated that if RGB stars in NGC 6822 are this young then the metallicity computed from the RGB slope may be ~ 0.05 dex too low.Comment: 19 pages of text; 10 figures; to appear in the PAS

    The Star Formation History of NGC 6822

    Get PDF
    Images of five fields in the Local Group dwarf irregular galaxy NGC 6822 obtained with the {\it Hubble Space Telescope} in the F555W and F814W filters are presented. Photometry for the stars in these images was extracted using the Point-Spread-Function fitting program HSTPHOT/MULTIPHOT. The resulting color-magnitude diagrams reach down to V≈26V\approx26, a level well below the red clump, and were used to solve quantitatively for the star formation history of NGC 6822. Assuming that stars began forming in this galaxy from low-metallicity gas and that there is little variation in the metallicity at each age, the distribution of stars along the red giant branch is best fit with star formation beginning in NGC 6822 12-15 Gyr ago. The best-fitting star formation histories for the old and intermediate age stars are similar among the five fields and show a constant or somewhat increasing star formation rate from 15 Gyr ago to the present except for a possible dip in the star formation rate from 3 to 5 Gyr ago. The main differences among the five fields are in the higher overall star formation rate per area in the bar fields as well as in the ratio of the recent star formation rate to the average past rate. These variations in the recent star formation rate imply that stars formed within the past 0.6 Gyr are not spatially very well mixed throughout the galaxy.Comment: 47 pages, 28 Figures, accepted for publication in the Astronomical Journa

    Stellar spectroscopy far beyond the Local Group

    Get PDF
    Multi-object spectroscopic observations of blue supergiants in NGC 3621, a spiral galaxy at a distance of 6.7 Mpc, carried out with the ESO VLT and FORS are presented. We demonstrate the feasibility of quantitative stellar spectroscopy at distances approaching a ten-fold increase over previous investigations by determining chemical composition, stellar parameters, reddening, extinction and wind properties of one of our targets, a supergiant of spectral type A1 Ia located in the outskirts of NGC 3621. The metallicity (determined from iron group elements) is reduced by a factor of two relative to the sun in qualitative agreement with results from previous abundance studies based on H II region oxygen emission lines. Reddening and extinction are E(B-V) = 0.12 and Av = 0.37, respectively, mostly caused by the galactic foreground. Comparing stellar wind momentum and absolute V magnitude with galactic and M31 counterparts we confirm the potential of the wind momentum-luminosity relationship as an alternative tool to estimate extragalactic distances.Comment: 9 pages, 4 figures, 1 table, accepted for publication in The Astrophysical Journal Letter

    A Survey of Local Group Galaxies Currently Forming Stars: II. UBVRI Photometry of Stars in Seven Dwarfs and a Comparison of the Entire Sample

    Full text link
    We have obtained UBVRI images with the Kitt Peak and Cerro Tololo 4-m telescopes and Mosaic cameras of seven dwarfs in (or near) the Local Group, all of which have known evidence of recent star formation: IC10, NGC 6822, WLM, Sextans B, Sextans A, Pegasus,and Phoenix. We construct color-magnitude diagrams (CMDs) of these systems, as well as neighboring regions that can be used to evaluate the degree of foreground contamination by stars in the Milky Way. Inter-comparison of these CMDs with those of M31, M33, the LMC, and the SMC permits us to determine improved reddening values for a typical OB star found within these galaxies. All of the CMDs reveal a strong or modest number of blue supergiants. All but Pegasus and Phoenix also show the clear presence of red supergiants in the CMD, although IC10 appears to be deficient in these objects given its large WR population. The bright stars of intermediate color in the CMD are badly contaminated by foreground stars (30-100%), and considerable spectroscopy is needed before statistics on the yellow supergiants in these systems will be known. This study is intended to serve both as the impetus and "finding charts" for further space-based imaging, and for many spectroscopic programs at large aperture.Comment: Added Erratum. Revised versions of Tables 12 and 13 can be found at http://www.lowell.edu/users/massey/Table12Revised.txt and http://www.lowell.edu/users/massey/Table13Revised.tx

    The Spatial Homogeneity of Nebular and Stellar Oxygen Abundances in the Local Group Dwarf Irregular Galaxy NGC 6822

    Full text link
    To test the existence of a possible radial gradient in oxygen abundances within the Local Group dwarf irregular galaxy NGC 6822, we have obtained optical spectra of 19 nebulae with the EFOSC2 spectrograph on the 3.6-m telescope at ESO La Silla. The extent of the measured nebulae spans galactocentric radii in the range between 0.05 kpc and 2 kpc (over four exponential scale lengths). In five H II regions (Hubble I, Hubble V, Kalpha, Kbeta, KD28e), the temperature-sensitive [O III] 4363 emission line was detected, and direct oxygen abundances were derived. Oxygen abundances for the remaining H II regions were derived using bright-line methods. The oxygen abundances for three A-type supergiant stars are slightly higher than nebular values at comparable radii. Linear least-square fits to various subsets of abundance data were obtained. When all of the measured nebulae are included, no clear signature is found for an abundance gradient. A fit to only newly observed H II regions with [O III] 4363 detections yields an oxygen abundance gradient of -0.14 +/- 0.07 dex/kpc. The gradient becomes slightly more significant (-0.16 +/- 0.05 dex/kpc) when three additional H II regions with [O III] 4363 measurements from the literature are added. Assuming no abundance gradient, we derive a mean nebular oxygen abundance 12+log(O/H) = 8.11 +/- 0.10 from [O III] 4363 detections in the five H II regions from our present data; this mean value corresponds to [O/H] = -0.55.Comment: Accepted, Ap.J.; 25 pages (AASTeX 5.2; emulateapj) with 14 figures. Full paper with color figures may be retrieved from http://www.astro.umn.edu/~hlee

    Science and Adaptive Optics Requirements of MICADO, the E-ELT adaptive optics imaging camera

    Get PDF
    MICADO is the adaptive optics imaging camera being studied for the E-ELT. Its design has been optimised for use with MCAO, but will have its own SCAO module for the initial operational phase; and in principle could also be used with GLAO or LTAO. In this contribution, we outline a few of the science drivers for MICADO and show how these have shaped its design. The science drivers have led to a number of requirements on the AO system related to astrometry, photometry, and PSF uniformity. We discuss why these requirements have arisen and what might be done about them.Comment: 6 pages, to appear in the proceedings of the AO4ELT conference, held in Paris, 22-26 June 200

    Report drawn up on behalf of the Committee on Economic and Monetary Affairs on the proposal from the Commission of the European Communities to the Council (Doc. 1-99/83-COM(83) 85 final) for a Council Decision implementing the decision empowering the Commission to borrow under the New Community Instrument for the purpose of promoting investment within the Community, Working Documents 1983-1984, Document 1-236/83, 3 May 1983

    Get PDF
    The 4MOST([1]) instrument is a concept for a wide-field, fibre-fed high multiplex spectroscopic instrument facility on the ESO VISTA telescope designed to perform a massive (initially >25x10(6) spectra in 5 years) combined all-sky public survey. The main science drivers are: Gaia follow up of chemo-dynamical structure of the Milky Way, stellar radial velocities, parameters and abundances, chemical tagging; eROSITA follow up of cosmology with x-ray clusters of galaxies, X-ray AGN/galaxy evolution to z similar to 5, Galactic X-ray sources and resolving the Galactic edge; Euclid/LSST/SKA and other survey follow up of Dark Energy, Galaxy evolution and transients. The surveys will be undertaken simultaneously requiring: highly advanced targeting and scheduling software, also comprehensive data reduction and analysis tools to produce high-level data products. The instrument will allow simultaneous observations of similar to 1600 targets at R similar to 5,000 from 390-900nm and similar to 800 targets at R>18,000 in three channels between similar to 395-675nm (channel bandwidth: 45nm blue, 57nm green and 69nm red) over a hexagonal field of view of similar to 4.1 degrees2. The initial 5-year 4MOST survey is currently expect to start in 2020. We provide and overview of the 4MOST systems: opto-mechanical, control, data management and operations concepts; and initial performance estimates

    Simulation vs. Reality: A Comparison of In Silico Distance Predictions with DEER and FRET Measurements

    Get PDF
    Site specific incorporation of molecular probes such as fluorescent- and nitroxide spin-labels into biomolecules, and subsequent analysis by Förster resonance energy transfer (FRET) and double electron-electron resonance (DEER) can elucidate the distance and distance-changes between the probes. However, the probes have an intrinsic conformational flexibility due to the linker by which they are conjugated to the biomolecule. This property minimizes the influence of the label side chain on the structure of the target molecule, but complicates the direct correlation of the experimental inter-label distances with the macromolecular structure or changes thereof. Simulation methods that account for the conformational flexibility and orientation of the probe(s) can be helpful in overcoming this problem. We performed distance measurements using FRET and DEER and explored different simulation techniques to predict inter-label distances using the Rpo4/7 stalk module of the M. jannaschii RNA polymerase. This is a suitable model system because it is rigid and a high-resolution X-ray structure is available. The conformations of the fluorescent labels and nitroxide spin labels on Rpo4/7 were modeled using in vacuo molecular dynamics simulations (MD) and a stochastic Monte Carlo sampling approach. For the nitroxide probes we also performed MD simulations with explicit water and carried out a rotamer library analysis. Our results show that the Monte Carlo simulations are in better agreement with experiments than the MD simulations and the rotamer library approach results in plausible distance predictions. Because the latter is the least computationally demanding of the methods we have explored, and is readily available to many researchers, it prevails as the method of choice for the interpretation of DEER distance distributions

    MOONS: a Multi-Object Optical and Near-infrared Spectrograph for the VLT

    Full text link
    MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of 1000 fibers deployable over a field of view of 500 square arcmin, the largest patrol field offered by the Nasmyth focus at the VLT. The total wavelength coverage is 0.8um-1.8um and two resolution modes: medium resolution and high resolution. In the medium resolution mode (R=4,000-6,000) the entire wavelength range 0.8um-1.8um is observed simultaneously, while the high resolution mode covers simultaneously three selected spectral regions: one around the CaII triplet (at R=8,000) to measure radial velocities, and two regions at R=20,000 one in the J-band and one in the H-band, for detailed measurements of chemical abundances. The grasp of the 8.2m Very Large Telescope (VLT) combined with the large multiplex and wavelength coverage of MOONS - extending into the near-IR - will provide the observational power necessary to study galaxy formation and evolution over the entire history of the Universe, from our Milky Way, through the redshift desert and up to the epoch of re-ionization at z>8-9. At the same time, the high spectral resolution mode will allow astronomers to study chemical abundances of stars in our Galaxy, in particular in the highly obscured regions of the Bulge, and provide the necessary follow-up of the Gaia mission. Such characteristics and versatility make MOONS the long-awaited workhorse near-IR MOS for the VLT, which will perfectly complement optical spectroscopy performed by FLAMES and VIMOS.Comment: 9 pages, 5 figures. To appear in the proceedings of the SPIE Astronomical Instrumentation + Telescopes conference, Amsterdam, 201

    Precision and accuracy of single-molecule FRET measurements - a multi-laboratory benchmark study

    Get PDF
    Single-molecule Förster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods
    • …
    corecore