142 research outputs found

    Genetic influences on externalizing psychopathology overlap with cognitive functioning and show developmental variation

    Get PDF
    Background: Questions remain regarding whether genetic influences on early life psychopathology overlap with cognition and show developmental variation. Methods: Using data from 9,421 individuals aged 8-21 from the Philadelphia Neurodevelopmental Cohort, factors of psychopathology were generated using a bifactor model of item-level data from a psychiatric interview. Five orthogonal factors were generated: anxious-misery (mood and anxiety), externalizing (attention deficit hyperactivity and conduct disorder), fear (phobias), psychosis-spectrum, and a general factor. Genetic analyses were conducted on a subsample of 4,662 individuals of European American ancestry. A genetic relatedness matrix was used to estimate heritability of these factors, and genetic correlations with executive function, episodic memory, complex reasoning, social cognition, motor speed, and general cognitive ability. Gene × Age analyses determined whether genetic influences on these factors show developmental variation. Results: Externalizing was heritable (h2 = 0.46, p = 1 × 10-6), but not anxious-misery (h2 = 0.09, p = 0.183), fear (h2 = 0.04, p = 0.337), psychosis-spectrum (h2 = 0.00, p = 0.494), or general psychopathology (h2 = 0.21, p = 0.040). Externalizing showed genetic overlap with face memory (ρg = -0.412, p = 0.004), verbal reasoning (ρg = -0.485, p = 0.001), spatial reasoning (ρg = -0.426, p = 0.010), motor speed (ρg = 0.659, p = 1x10-4), verbal knowledge (ρg = -0.314, p = 0.002), and general cognitive ability (g)(ρg = -0.394, p = 0.002). Gene × Age analyses revealed decreasing genetic variance (γg = -0.146, p = 0.004) and increasing environmental variance (γe = 0.059, p = 0.009) on externalizing. Conclusions: Cognitive impairment may be a useful endophenotype of externalizing psychopathology and, therefore, help elucidate its pathophysiological underpinnings. Decreasing genetic variance suggests that gene discovery efforts may be more fruitful in children than adolescents or young adults

    Disrupted anatomic networks in the 22q11.2 deletion syndrome

    Get PDF
    AbstractThe 22q11.2 deletion syndrome (22q11DS) is an uncommon genetic disorder with an increased risk of psychosis. Although the neural substrates of psychosis and schizophrenia are not well understood, aberrations in cortical networks represent intriguing potential mechanisms. Investigations of anatomic networks within 22q11DS are sparse. We investigated group differences in anatomic network structure in 48 individuals with 22q11DS and 370 typically developing controls by analyzing covariance patterns in cortical thickness among 68 regions of interest using graph theoretical models. Subjects with 22q11DS had less robust geographic organization relative to the control group, particularly in the occipital and parietal lobes. Multiple global graph theoretical statistics were decreased in 22q11DS. These results are consistent with prior studies demonstrating decreased connectivity in 22q11DS using other neuroimaging methodologies

    Attention deficit hyperactivity disorder symptoms and psychosis in 22q11.2 deletion syndrome

    Get PDF
    Objective: 22q11.2 Deletion Syndrome (22q11.2DS) is associated with increased risk for schizophrenia in adulthood while ADHD is the most prevalent diagnosis in childhood. Inattention symptoms are pronounced in 22q11.2DS and given that attentional impairment is a core feature of schizophrenia, inattention symptoms may reflect underlying ADHD, psychosis, or both. We investigate whether inattention is associated with psychosis in 22q11.2DS and in other groups at risk for psychosis but without the deletion (ND) (idiopathic clinical risk and first degree family members of individuals with schizophrenia). Methods: 137 individuals with 22q11.2DS (mean age: 14.0), 84 ND individuals with subthreshold psychosis (mean age: 16.9) and 31 ND individuals with family history of psychosis (mean age: 17.0) were included in the study. Psychopathology was assessed using research diagnostic assessments. Results: ADHD total symptoms were associated with overall levels of subthreshold psychosis symptoms in 22q11.2DS (β=0.8, p=0.04). Inattention symptoms were specifically associated with positive (β=0.5, p=0.004), negative (β=0.5, p=0.03), and disorganized (β=0.5, p<0.001) symptoms, while hyperactivity-impulsivity symptoms were associated with disorganized symptoms (β=0.5, p=0.04). The prevalence of ADHD inattention symptoms was higher in 22q11.2DS with subthreshold psychosis compared to ND individuals with subthreshold psychosis (p<0.001), even when adjusting for cognitive impairment and overall psychopathology. The pattern was similar when comparing individuals with 22q11.2DS and ND individuals with family history of psychosis. Conclusions: This is the first study to examine the associations between ADHD and psychosis in 22q11.2DS. Our findings support a potentially important role of ADHD inattention symptoms in psychosis in 22q11.2DS

    Subthreshold psychosis in 22q11.2 deletion syndrome: multisite naturalistic study

    Get PDF
    Nearly one-third of individuals with 22q11.2 deletion syndrome (22q11.2DS) develop a psychotic disorder during life, most of them by early adulthood. Importantly, a full-blown psychotic episode is usually preceded by subthreshold symptoms. In the current study, 760 participants (aged 6-55 years) with a confirmed hemizygous 22q11.2 microdeletion have been recruited through 10 medical sites worldwide, as part of an international research consortium. Of them, 692 were nonpsychotic and with complete measurement data. Subthreshold psychotic symptoms were assessed using the Structured Interview for Prodromal Syndromes (SIPS). Nearly one-third of participants met criteria for positive subthreshold psychotic symptoms (32.8%), less than 1% qualified for acute positive subthreshold symptoms, and almost a quarter met criteria for negative/disorganized subthreshold symptoms (21.7%). Adolescents and young adults (13-25 years) showed the highest rates of subthreshold psychotic symptoms. Additionally, higher rates of anxiety disorders and attention deficit/hyperactivity disorder (ADHD) were found among the study participants with subthreshold psychotic symptoms compared to those without. Full-scale IQ, verbal IQ, and global functioning (GAF) scores were negatively associated with participants' subthreshold psychotic symptoms. This study represents the most comprehensive analysis reported to date on subthreshold psychosis in 22q11.2DS. Novel findings include age-related changes in subthreshold psychotic symptoms and evidence that cognitive deficits are associated with subthreshold psychosis in this population. Future studies should longitudinally follow these symptoms to detect whether and how early identification and treatment of these manifestations can improve long-term outcomes in those that eventually develop a psychotic disorder

    Development of the PSYCHS: Positive SYmptoms and Diagnostic Criteria for the CAARMS Harmonized with the SIPS

    Get PDF
    Aim: To harmonize two ascertainment and severity rating instruments commonly used for the clinical high risk syndrome for psychosis (CHR-P): the Structured Interview for Psychosis-risk Syndromes (SIPS) and the Comprehensive Assessment of At-Risk Mental States (CAARMS). Methods: The initial workshop is described in the companion report from Addington et al. After the workshop, lead experts for each instrument continued harmonizing attenuated positive symptoms and criteria for psychosis and CHR-P through an intensive series of joint videoconferences. Results: Full harmonization was achieved for attenuated positive symptom ratings and psychosis criteria, and modest harmonization for CHR-P criteria. The semi-structured interview, named Positive SYmptoms and Diagnostic Criteria for the CAARMS Harmonized with the SIPS (PSYCHS), generates CHR-P criteria and severity scores for both CAARMS and SIPS. Conclusions: Using the PSYCHS for CHR-P ascertainment, conversion determination, and attenuated positive symptom severity rating will help in comparing findings across studies and in meta-analyses

    Deficient prepulse inhibition in schizophrenia detected by the multi-site COGS

    Full text link
    BACKGROUND: Startle inhibition by weak prepulses (PPI) is studied to understand the biology of information processing in schizophrenia patients and healthy comparison subjects (HCS). The Consortium on the Genetics of Schizophrenia (COGS) identified associations between PPI and single nucleotide polymorphisms in schizophrenia probands and unaffected relatives, and linkage analyses extended evidence for the genetics of PPI deficits in schizophrenia in the COGS-1 family study. These findings are being extended in a 5-site “COGS-2” study of 1800 patients and 1200 unrelated HCS to facilitate genetic analyses. We describe a planned interim analysis of COGS-2 PPI data. METHODS: Eyeblink startle was measured in carefully screened HCS and schizophrenia patients (n=1402). Planned analyses of PPI (60 ms intervals) assessed effects of diagnosis, sex and test site, PPI-modifying effects of medications and smoking, and relationships between PPI and neurocognitive measures. RESULTS: 884 subjects met strict inclusion criteria. ANOVA of PPI revealed significant effects of diagnosis (p=0.0005) and sex (p<0.002), and a significant diagnosis × test site interaction. HCS > schizophrenia PPI differences were greatest among patients not taking 2(nd) generation antipsychotics, and were independent of smoking status. Modest but significant relationships were detected between PPI and performance in specific neurocognitive measures. DISCUSSION: The COGS-2 multi-site study detects schizophrenia-related PPI deficits reported in single-site studies, including patterns related to diagnosis, prepulse interval, sex, medication and other neurocognitive measures. Site differences were detected and explored. The target COGS-2 schizophrenia “endophenotype” of reduced PPI should prove valuable for identifying and confirming schizophrenia risk genes in future analyses

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study

    Full text link
    The Consortium on the Genetics of Schizophrenia Family Study (COGS-1) has previously reported our efforts to characterize the genetic architecture of 12 primary endophenotypes for schizophrenia. We now report the characterization of 13 additional measures derived from the same endophenotype test paradigms in the COGS-1 families. Nine of the measures were found to discriminate between schizophrenia patients and controls, were significantly heritable (31 to 62%), and were sufficiently independent of previously assessed endophenotypes, demonstrating utility as additional endophenotypes. Genotyping via a custom array of 1536 SNPs from 94 candidate genes identified associations for CTNNA2, ERBB4, GRID1, GRID2, GRIK3, GRIK4, GRIN2B, NOS1AP, NRG1, and RELN across multiple endophenotypes. An experiment-wide p value of 0.003 suggested that the associations across all SNPs and endophenotypes collectively exceeded chance. Linkage analyses performed using a genome-wide SNP array further identified significant or suggestive linkage for six of the candidate endophenotypes, with several genes of interest located beneath the linkage peaks (e.g., CSMD1, DISC1, DLGAP2, GRIK2, GRIN3A, and SLC6A3). While the partial convergence of the association and linkage likely reflects differences in density of gene coverage provided by the distinct genotyping platforms, it is also likely an indication of the differential contribution of rare and common variants for some genes and methodological differences in detection ability. Still, many of the genes implicated by COGS through endophenotypes have been identified by independent studies of common, rare, and de novo variation in schizophrenia, all converging on a functional genetic network related to glutamatergic neurotransmission that warrants further investigation
    corecore