77 research outputs found
Submillimetre/TeraHertz Astronomy at Dome C with CEA filled bolometer array
Submillimetre/TeraHertz (e.g. 200, 350, 450 microns) astronomy is the prime
technique to unveil the birth and early evolution of a broad range of
astrophysical objects. A major obstacle to carry out submm observations from
ground is the atmosphere. Preliminary site testing and atmospheric transmission
models tend to demonstrate that Dome C could offer the best conditions on Earth
for submm/THz astronomy. The CAMISTIC project aims to install a filled
bolometer-array camera with 16x16 pixels on IRAIT at Dome C and explore the
200-m windows for potential ground-based observations.Comment: 6 page
Submm/FIR astronomy in Antarctica: Potential for a large telescope facility
20International audiencePreliminary site testing datasets suggest that Dome C in Antarctica is one of the best sites on Earth for astronomical observations in the 200 to 500 micron regime, i.e. for far-infrared (FIR) and submillimetre (submm) astronomy. We present an overview of potential science cases that could be addressed with a large telescope facility at Dome C. This paper also includes a presentation of the current knowledge about the site characterics in terms of atmospheric transmission, stability, sky noise and polar constraints on telescopes. Current and future site testing campaigns are finally described
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
Identification of Reproduction-Specific Genes Associated with Maturation and Estrogen Exposure in a Marine Bivalve Mytilus edulis
Background: While it is established that vertebrate-like steroids, particularly estrogens (estradiol, estrone) and androgens (testosterone), are present in various tissues of molluscs, it is still unclear what role these play in reproductive endocrinology in such organisms. This is despite the significant commercial shellfishery interest in several bivalve species and their decline. Methodology/Principal Findings: Using suppression subtraction hybridisation of mussel gonad samples at two stages (early and mature) of gametogenesis and (in parallel) following controlled laboratory estrogen exposure, we isolate several differentially regulated genes including testis-specific kinases, vitelline lysin and envelope sequences. Conclusions: The differentially expressed mRNAs isolated provide evidence that mussels may be impacted by exogenous estrogen exposure
Cognitive behavioural therapy with optional graded exercise therapy in patients with severe fatigue with myotonic dystrophy type 1:a multicentre, single-blind, randomised trial
Background:
Myotonic dystrophy type 1 is the most common form of muscular dystrophy in adults and leads to severe fatigue, substantial physical functional impairment, and restricted social participation. In this study, we aimed to determine whether cognitive behavioural therapy optionally combined with graded exercise compared with standard care alone improved the health status of patients with myotonic dystrophy type 1.
Methods:
We did a multicentre, single-blind, randomised trial, at four neuromuscular referral centres with experience in treating patients with myotonic dystrophy type 1 located in Paris (France), Munich (Germany), Nijmegen (Netherlands), and Newcastle (UK). Eligible participants were patients aged 18 years and older with a confirmed genetic diagnosis of myotonic dystrophy type 1, who were severely fatigued (ie, a score of ≥35 on the checklist-individual strength, subscale fatigue). We randomly assigned participants (1:1) to either cognitive behavioural therapy plus standard care and optional graded exercise or standard care alone. Randomisation was done via a central web-based system, stratified by study site. Cognitive behavioural therapy focused on addressing reduced patient initiative, increasing physical activity, optimising social interaction, regulating sleep–wake patterns, coping with pain, and addressing beliefs about fatigue and myotonic dystrophy type 1. Cognitive behavioural therapy was delivered over a 10-month period in 10–14 sessions. A graded exercise module could be added to cognitive behavioural therapy in Nijmegen and Newcastle. The primary outcome was the 10-month change from baseline in scores on the DM1-Activ-c scale, a measure of capacity for activity and social participation (score range 0–100). Statistical analysis of the primary outcome included all participants for whom data were available, using mixed-effects linear regression models with baseline scores as a covariate. Safety data were presented as descriptives. This trial is registered with ClinicalTrials.gov, number NCT02118779.
Findings:
Between April 2, 2014, and May 29, 2015, we randomly assigned 255 patients to treatment: 128 to cognitive behavioural therapy plus standard care and 127 to standard care alone. 33 (26%) of 128 assigned to cognitive behavioural therapy also received the graded exercise module. Follow-up continued until Oct 17, 2016. The DM1-Activ-c score increased from a mean (SD) of 61·22 (17·35) points at baseline to 63·92 (17·41) at month 10 in the cognitive behavioural therapy group (adjusted mean difference 1·53, 95% CI −0·14 to 3·20), and decreased from 63·00 (17·35) to 60·79 (18·49) in the standard care group (−2·02, −4·02 to −0·01), with a mean difference between groups of 3·27 points (95% CI 0·93 to 5·62, p=0·007). 244 adverse events occurred in 65 (51%) patients in the cognitive behavioural therapy group and 155 in 63 (50%) patients in the standard care alone group, the most common of which were falls (155 events in 40 [31%] patients in the cognitive behavioural therapy group and 71 in 33 [26%] patients in the standard care alone group). 24 serious adverse events were recorded in 19 (15%) patients in the cognitive behavioural therapy group and 23 in 15 (12%) patients in the standard care alone group, the most common of which were gastrointestinal and cardiac.
Interpretation:
Cognitive behavioural therapy increased the capacity for activity and social participation in patients with myotonic dystrophy type 1 at 10 months. With no curative treatment and few symptomatic treatments, cognitive behavioural therapy could be considered for use in severely fatigued patients with myotonic dystrophy type 1.
Funding:
The European Union Seventh Framework Programme
Racial differences in systemic sclerosis disease presentation: a European Scleroderma Trials and Research group study
Objectives. Racial factors play a significant role in SSc. We evaluated differences in SSc presentations between white patients (WP), Asian patients (AP) and black patients (BP) and analysed the effects of geographical locations.Methods. SSc characteristics of patients from the EUSTAR cohort were cross-sectionally compared across racial groups using survival and multiple logistic regression analyses.Results. The study included 9162 WP, 341 AP and 181 BP. AP developed the first non-RP feature faster than WP but slower than BP. AP were less frequently anti-centromere (ACA; odds ratio (OR) = 0.4, P < 0.001) and more frequently anti-topoisomerase-I autoantibodies (ATA) positive (OR = 1.2, P = 0.068), while BP were less likely to be ACA and ATA positive than were WP [OR(ACA) = 0.3, P < 0.001; OR(ATA) = 0.5, P = 0.020]. AP had less often (OR = 0.7, P = 0.06) and BP more often (OR = 2.7, P < 0.001) diffuse skin involvement than had WP.AP and BP were more likely to have pulmonary hypertension [OR(AP) = 2.6, P < 0.001; OR(BP) = 2.7, P = 0.03 vs WP] and a reduced forced vital capacity [OR(AP) = 2.5, P < 0.001; OR(BP) = 2.4, P < 0.004] than were WP. AP more often had an impaired diffusing capacity of the lung than had BP and WP [OR(AP vs BP) = 1.9, P = 0.038; OR(AP vs WP) = 2.4, P < 0.001]. After RP onset, AP and BP had a higher hazard to die than had WP [hazard ratio (HR) (AP) = 1.6, P = 0.011; HR(BP) = 2.1, P < 0.001].Conclusion. Compared with WP, and mostly independent of geographical location, AP have a faster and earlier disease onset with high prevalences of ATA, pulmonary hypertension and forced vital capacity impairment and higher mortality. BP had the fastest disease onset, a high prevalence of diffuse skin involvement and nominally the highest mortality
Methanol Masers: Tracer of Star Formation
The Onsala VLBI group has been conducting an extensive study of the Northern hemisphere methanol masers using the European VLBI Network (EVN) and the VLBA since early 1997. In parallel, a blind survey of the Galactic plane has been undertaken in order to discover new 6.7 GHz methanol masers using the Onsala-25m antenna, as well as a search for new class II methanol maser lines at higher frequencies (85-112 GHz). This thesis reports the results in these three observational projects and shows that methanol masers are excellent tracers of early stages in the process of massive star formation. VLBI observations of 6.7 and 12.2 GHz methanol masers toward fifteen star-forming regions (namely IRAS20126+4104, NGC7538, S252, W75N, W48, G31.28+0.06, S231, S255, S269, MonR2, G9.62+0.20, CepA, W51, G59.78+0.06 and G29.95-0.02) have given four main results. First, the majority of the observed methanol maser sites do not coincide spatially with UC HII regions. Instead, the methanol maser sites may trace a stage of massiveion prior to the development of observable ionised regions. Secondly, in many cases the methanol maser components form a line with a linear velocity gradient along it, which is consistent with a rotating disk seen edge-on. The masers partially delineate the edge-on disk and probably lie only in front of the star. There is also some evidence for methanol masers tracing outflows in a few sources. Preliminary proper motion studies of one source, G9.62+0.20, show that the maser components lying in the lines are moving apart. Finally, the intrinsic structures of the masing regions consist of a core and a halo. The first results of the unbiased survey after 35 square degrees observed toward the Galactic plane, show a poor detection rate of new methanol masers in the regions far away from the galactic centre. Instead, most of the detected methanol maser sites are located in the inner part of the Galactic plane. This confirms that the distribution of methanol maser sources is correlated to the distribution of massive star-forming regions. Some methanol maser sites do not exhibit any traditional emission of young massive stars, indicating that the methanol masers could trace deeply embedded massive protostars. The search for new methanol maser lines in the frequency range 85-112 GHz shows that strong thermal emissions are present at the frequencies of maser line candidates. Intense masers are only observed at 107 GHz. Likely detections of new methanol masers at 85.5, 94.5, 108.9 and 111.3 GHz are reported. In summary, the collected evidence resulting from multi-wavelength observations at high and low resolutions, demonstrates that class II methanol masers are directly involved in the earliest process of massive star formation and are potentially powerful tracers of stellar evolution
Herschel, lumières sur les mondes enfouis de l’Univers
L’observatoire spatial
Herschel doit son nom
au physicien britannique
William Herschel
(1738-1822), découvreur
du rayonnement infrarouge
du Soleil. Herschel est
désormais le nom du
plus grand télescope
spatial jamais conçu. Cet observatoire servira
pendant quatre ans
l’astronomie dans l’infrarouge
et le submillimétrique. Lancé le 14 mai 2009
par Ariane 5, le satellite
est maintenant en orbite
autour du second point
de Lagrange à 1,5 millions
de km de la Terre. Sa mission
commence : résoudre
les mystères de la formation
des étoiles et de l’évolution
des galaxies
- …