480 research outputs found

    Alloy*: A Higher-Order Relational Constraint Solver

    Get PDF
    The last decade has seen a dramatic growth in the use of constraint solvers as a computational mechanism, not only for analysis and synthesis of software, but also at runtime. Solvers are available for a variety of logics but are generally restricted to first-order formulas. Some tasks, however, most notably those involving synthesis, are inherently higher order; these are typically handled by embedding a first-order solver (such as a SAT or SMT solver) in a domain-specific algorithm. Using strategies similar to those used in such algorithms, we show how to extend a first-order solver (in this case Kodkod, a model finder for relational logic used as the engine of the Alloy Analyzer) so that it can handle quantifications over higher-order structures. The resulting solver is sufficiently general that it can be applied to a range of problems; it is higher order, so that it can be applied directly, without embedding in another algorithm; and it performs well enough to be competitive with specialized tools on standard benchmarks. Although the approach is demonstrated for a particular relational logic, the principles behind it could be applied to other first-order solvers. Just as the identification of first-order solvers as reusable backends advanced the performance of specialized tools and simplified their architecture, factoring out higher-ordersolvers may bring similar benefits to a new class of tools

    Implementing QVT-R bidirectional model transformations using alloy

    Get PDF
    QVT Relations (QVT-R) is the standard language proposed by the OMG to specify bidirectional model transformations. Unfortunately, in part due to ambiguities and omissions in the original semantics, acceptance and development of effective tool support has been slow. Recently, the checking semantics of QVT-R has been clarified and formalized. In this paper we propose a QVT-R tool that complies to such semantics. Unlike any other existing tool, it also supports meta-models enriched with OCL constraints (thus avoiding returning ill-formed models), and proposes an alternative enforcement semantics that works according to the simple and predictable “principle of least change”. The implementation is based on an embedding of both QVT-R transformations and UML class diagrams (annotated with OCL) in Alloy, a lightweight formal specification language with support for automatic model finding via SAT solving.Fundação para a Ciência e a Tecnologi

    Effects of Prandial Versus Fasting Glycemia on Cardiovascular Outcomes in Type 2 Diabetes: The HEART2D trial

    Get PDF
    OBJECTIVE—Hyperglycemia and Its Effect After Acute Myocardial Infarction on Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus (HEART2D) is a multinational, randomized, controlled trial designed to compare the effects of prandial versus fasting glycemic control on risk for cardiovascular outcomes in patients with type 2 diabetes after acute myocardial infarction (AMI)

    Effects of Prandial Versus Fasting Glycemia on Cardiovascular Outcomes in Type 2 Diabetes: The HEART2D trial

    Get PDF
    OBJECTIVE—Hyperglycemia and Its Effect After Acute Myocardial Infarction on Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus (HEART2D) is a multinational, randomized, controlled trial designed to compare the effects of prandial versus fasting glycemic control on risk for cardiovascular outcomes in patients with type 2 diabetes after acute myocardial infarction (AMI)

    Synaptic Loss in Primary Tauopathies Revealed by [11 C]UCB-J Positron Emission Tomography.

    Get PDF
    BACKGROUND: Synaptic loss is a prominent and early feature of many neurodegenerative diseases. OBJECTIVES: We tested the hypothesis that synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) (Richardson's syndrome) and amyloid-negative corticobasal syndrome (CBS). METHODS: Forty-four participants (15 CBS, 14 PSP, and 15 age-/sex-/education-matched controls) underwent PET with the radioligand [11 C]UCB-J, which binds to synaptic vesicle glycoprotein 2A, a marker of synaptic density; participants also had 3 Tesla MRI and clinical and neuropsychological assessment. RESULTS: Nine CBS patients had negative amyloid biomarkers determined by [11 C]PiB PET and hence were deemed likely to have corticobasal degeneration (CBD). Patients with PSP-Richardson's syndrome and amyloid-negative CBS were impaired in executive, memory, and visuospatial tasks. [11 C]UCB-J binding was reduced across frontal, temporal, parietal, and occipital lobes, cingulate, hippocampus, insula, amygdala, and subcortical structures in both PSP and CBD patients compared to controls (P < 0.01), with median reductions up to 50%, consistent with postmortem data. Reductions of 20% to 30% were widespread even in areas of the brain with minimal atrophy. There was a negative correlation between global [11 C]UCB-J binding and the PSP and CBD rating scales (R = -0.61, P < 0.002; R = -0.72, P < 0.001, respectively) and a positive correlation with the revised Addenbrooke's Cognitive Examination (R = 0.52; P = 0.01). CONCLUSIONS: We confirm severe synaptic loss in PSP and CBD in proportion to disease severity, providing critical insight into the pathophysiology of primary degenerative tauopathies. [11 C]UCB-J may facilitate treatment strategies for disease-modification, synaptic maintenance, or restoration. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    A call for action to establish a research agenda for building a future health workforce in Europe

    Get PDF
    This Call for Action is closely linked to the European Public Health Association (EUPHA) and its new section ‘Health Workforce Research’. The idea was first developed during a pre-conference and two workshops at the EUPHA Conference in November 2016 in Vienna and further investigated at the EUPHA Conference in November 2017. We wish to thank all participants for inspiring discussions and for sharing ideas and knowledge.Peer reviewedPublisher PD

    Chagasic Thymic Atrophy Does Not Affect Negative Selection but Results in the Export of Activated CD4+CD8+ T Cells in Severe Forms of Human Disease

    Get PDF
    Extrathymic CD4+CD8+ double-positive (DP) T cells are increased in some pathophysiological conditions, including infectious diseases. In the murine model of Chagas disease, it has been shown that the protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironment and the lymphoid compartment. In the acute phase, this results in a severe atrophy of the organ and early release of DP cells into the periphery. To date, the effect of the changes promoted by the parasite infection on thymic central tolerance has remained elusive. Herein we show that the intrathymic key elements that are necessary to promote the negative selection of thymocytes undergoing maturation during the thymopoiesis remains functional during the acute chagasic thymic atrophy. Intrathymic expression of the autoimmune regulator factor (Aire) and tissue-restricted antigen (TRA) genes is normal. In addition, the expression of the proapoptotic Bim protein in thymocytes was not changed, revealing that the parasite infection-induced thymus atrophy has no effect on these marker genes necessary to promote clonal deletion of T cells. In a chicken egg ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic system, the administration of OVA peptide into infected mice with thymic atrophy promoted OVA-specific thymocyte apoptosis, further indicating normal negative selection process during the infection. Yet, although the intrathymic checkpoints necessary for thymic negative selection are present in the acute phase of Chagas disease, we found that the DP cells released into the periphery acquire an activated phenotype similar to what is described for activated effector or memory single-positive T cells. Most interestingly, we also demonstrate that increased percentages of peripheral blood subset of DP cells exhibiting an activated HLA-DR+ phenotype are associated with severe cardiac forms of human chronic Chagas disease. These cells may contribute to the immunopathological events seen in the Chagas disease

    C4b-binding protein inhibits particulate- and crystalline-induced NLRP3 inflammasome activation

    Get PDF
    Dysregulated NLRP3 inflammasome activation drives a wide variety of diseases, while endogenous inhibition of this pathway is poorly characterised. The serum protein C4b-binding protein (C4BP) is a well-established inhibitor of complement with emerging functions as an endogenously expressed inhibitor of the NLRP3 inflammasome signalling pathway. Here, we identified that C4BP purified from human plasma is an inhibitor of crystalline- (monosodium urate, MSU) and particulate-induced (silica) NLRP3 inflammasome activation. Using a C4BP mutant panel, we identified that C4BP bound these particles via specific protein domains located on the C4BP α-chain. Plasma-purified C4BP was internalised into MSU- or silica-stimulated human primary macrophages, and inhibited MSU- or silica-induced inflammasome complex assembly and IL-1β cytokine secretion. While internalised C4BP in MSU or silica-stimulated human macrophages was in close proximity to the inflammasome adaptor protein ASC, C4BP had no direct effect on ASC polymerisation in in vitro assays. C4BP was also protective against MSU- and silica-induced lysosomal membrane damage. We further provide evidence for an anti-inflammatory function for C4BP in vivo, as C4bp-/- mice showed an elevated pro-inflammatory state following intraperitoneal delivery of MSU. Therefore, internalised C4BP is an inhibitor of crystal- or particle-induced inflammasome responses in human primary macrophages, while murine C4BP protects against an enhanced inflammatory state in vivo. Our data suggests C4BP has important functions in retaining tissue homeostasis in both human and mice as an endogenous serum inhibitor of particulate-stimulated inflammasome activation
    corecore