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ABSTRACT: Background: Synaptic loss is a prominent
and early feature of many neurodegenerative diseases.
Objectives: We tested the hypothesis that synaptic den-
sity is reduced in the primary tauopathies of progressive
supranuclear palsy (PSP) (Richardson’s syndrome) and
amyloid-negative corticobasal syndrome (CBS).
Methods: Forty-four participants (15 CBS, 14 PSP, and
15 age-/sex-/education-matched controls) underwent
PET with the radioligand [11C]UCB-J, which binds to syn-
aptic vesicle glycoprotein 2A, a marker of synaptic den-
sity; participants also had 3 Tesla MRI and clinical and
neuropsychological assessment.
Results: Nine CBS patients had negative amyloid bio-
markers determined by [11C]PiB PET and hence were
deemed likely to have corticobasal degeneration (CBD).
Patients with PSP-Richardson’s syndrome and amyloid-
negative CBS were impaired in executive, memory, and
visuospatial tasks. [11C]UCB-J binding was reduced across
frontal, temporal, parietal, and occipital lobes, cingulate,
hippocampus, insula, amygdala, and subcortical structures

in both PSP and CBD patients compared to controls
(P < 0.01), with median reductions up to 50%, consistent
with postmortem data. Reductions of 20% to 30% were
widespread even in areas of the brain with minimal atrophy.
There was a negative correlation between global [11C]UCB-
J binding and the PSP and CBD rating scales (R = –0.61,
P < 0.002; R = –0.72, P < 0.001, respectively) and a posi-
tive correlation with the revised Addenbrooke’s Cognitive
Examination (R = 0.52; P = 0.01).
Conclusions: We confirm severe synaptic loss in PSP and
CBD in proportion to disease severity, providing critical
insight into the pathophysiology of primary degenerative
tauopathies. [11C]UCB-J may facilitate treatment strategies
for disease-modification, synaptic maintenance, or restora-
tion. © 2020 The Authors. Movement Disorders published
by Wiley Periodicals LLC. on behalf of International
Parkinson and Movement Disorder Society.
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The primary degenerative tauopathies of progressive
supranuclear palsy (PSP) and corticobasal degeneration
(CBD) cause a severe combination of movement and
cognitive impairment.1-4 Pathologically, both are asso-
ciated with a four-repeat (4R)-tauopathy.5 We pro-
posed that the neurophysiological and functional
impairments in PSP and CBD are, at least in part, a
consequence of synaptic loss. For example, at postmor-
tem there is �50% loss of cortical synapses in PSP and
CBD,6,7 and in vivo there is limited evidence of
a � 20% loss of postsynaptic GABAA receptors as
shown with [11C]flumazenil PET.8,9 Indeed, abnormal
physiology in pathways involved in presynaptic func-
tion have been identified from transcriptomic studies in
patients with mutations in the microtubule-associated
protein tau gene.10 Transgenic models of tauopathies
(e.g., rTg4510) confirm a synaptotoxic effect of oligo-
meric tau, before cell death.11,12 Moreover, in other
neurodegenerative dementias, such as Alzheimer’s dis-
ease (AD), synaptic loss correlates better with cognitive
dysfunction than atrophy.13

We therefore tested the hypothesis that PSP and CBD
reduce synaptic density, in proportion to disease sever-
ity. We included patients with the classic phenotype of
PSP, PSP-Richardson’s syndrome, which has a high
clinicopathological correlation,14 and presents with
postural instability, supranuclear gaze palsy, axial rigid-
ity, and cognitive impairment.15 Other phenotypes of
PSP are increasingly recognized,3,16 but excluded here.
We include patients with corticobasal syndrome (CBS),
with combinations of asymmetric rigidity, apraxia, dys-
tonia, alien limb, and cognitive impairment.1,17 In order
to identify those with probable underlying CBD, it is
necessary to exclude the substantial minority of CBS
caused by AD pathology.18 We therefore used amyloid
imaging to distinguish those with CBS attributed to
CBD, versus AD; we refer to this group as the CBD
cohort. Both PSP and CBD are associated with cortical
and subcortical atrophy on MRI19; and changes in neu-
rophysiology and connectivity measured by magnetoen-
cephalography and functional MRI.20-23 However,
functional changes are also observed in areas of the
brain that are minimally atrophic.
We used PET with the radioligand, [11C]UCB-J ((R)-1-((3-

(methyl-11C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyr-
rolidin-2-one).24 This ligand quantifies synaptic
density,25,26 based on its affinity for the presynaptic
vesicle glycoprotein 2A (SV2A), that is ubiquitously
expressed in all brain synapses.27,28 [11C]UCB-J has
revealed hippocampal synaptic loss in AD, correlating
with episodic memory loss and clinical dementia
severity.29 We sought correlations between regional
[11C]UCB-J binding potentials, a metric of synaptic
density, and disease severity, in terms of cognitive
decline and global impairment on the PSP and CBD
rating scales.

Participants and Methods
Participants and Study Design

Fourteen patients with PSP-Richardson’s syndrome
and 15 patients with CBS were recruited from a tertiary
specialist clinic for PSP/CBS at the Cambridge Univer-
sity Centre for Parkinson-Plus (Cambridge, UK). Fifteen
healthy volunteers were recruited from the UK National
Institute for Health Research Join Dementia Research
register. Patients had either probable PSP-Richardson’s
syndrome,3 or both probable CBS and probable CBD.1

Healthy controls and patient volunteers were initially
screened by telephone; our exclusion criteria were: cur-
rent or recent history (within the last 5 years) of cancer,
concurrent use of the medication levetiracetam, history
of ischaemic or haemorrhagic stroke evident on MRI
available from the clinic, any severe physical illness or
co-morbidity that limited ability to fully participate in
the study, and any contraindications to performing MRI.
Eligible participants were invited for a research visit where
they underwent clinical and cognitive assessment includ-
ing measures of disease severity (Table 1); these included
a neurological examination by a clinician including the
PSP and CBD rating scales, the UPDRS (motor subsection
III), the Schwab and England Activities of Daily Living
(SEADL) and Clinical Dementia Rating Scale (CDR); cog-
nitive testing included the revised Addenbrooke’s Cogni-
tive Examination (ACE-R), the Mini-mental State
Examination (MMSE), the Montreal Cognitive Assess-
ment (MoCA), and the INECO frontal assessment test.
Patients’ carers completed the revised Cambridge Behav-
ioural Inventory (CBI).
All participants underwent simultaneous 3 Tesla MRI

and [11C]UCB-J PET. Patients with CBS also underwent
amyloid PET imaging using Pittsburgh compound B ([11C]
PiB), and cortical standardized uptake value ratio (SUVR;
50–70 minutes postinjection; whole cerebellum reference
tissue) was determined using the Centiloid Project method-
ology.30 Only those with a negative amyloid status, as
characterized by a cortical [11C]PiB SUVR <1.21 (obtained
by converting the Centiloid cutoff of 19 to SUVR using
the Centiloid-to-SUVR transformation)31 are included in
the subsequent analysis, with the aim of excluding patients
with CBS associated with Alzheimer’s disease. We inter-
pret this amyloid-negative group as having CBD, although
acknowledge that other pathologies are possible.
The research protocol was approved by the local Cam-

bridge Research Ethics Committee (REC: 18/EE/0059) and
the Administration of Radioactive Substances Advisory
Committee. All participants provided written informed
consent in accordance with the Declaration of Helsinki.

Neuroimaging
[11C]UCB-J was synthesized at the Radiopharmacy

Unit, Wolfson Brain Imaging Centre, Cambridge
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University (Cambridge, UK), using the methodology pre-
viously described.32 Dynamic PET data acquisition was
performed on a GE SIGNA PET/MR (GE Healthcare,
Waukesha, WI) for 90 minutes, starting immediately after
[11C]UCB-J injection (median injected activity: 351 ± 107
MBq; injected mass: ≤10 μg), with attenuation correction
including the use of a multisubject atlas method33,34 and
also improvements to the MRI brain coil component.35

Each emission image series was aligned using SPM12
(www.fil.ion.ucl.ac.uk/spm/software/spm12/), then rigidly
registered to a T1-weighted MRI acquired during PET
data acquisition (repetition time = 3.6 msec, echo time =
9.2 msec, 192 sagittal slices, in-plane resolution 0.55 ×
0.55 mm [subsequently interpolated to 1.0 × 1.0 mm];
slice thickness 1.0 mm). Using a version of the
Hammersmith atlas (http://brain-development.org) with
modified posterior fossa regions, combined regions of
interest (ROIs; including aggregated regions for frontal,
parietal, occipital, and temporal lobes; cingulate; and cere-
bellum) were spatially normalized to the T1-weighted
MRI of each participant using Advanced Normalization
Tools (ANTs) software.36 Regional time-activity curves
were extracted following the application of geometric
transfer matrix (GTM) partial volume correction (PVC37)
to each of the dynamic PET images. ROIs were multiplied
by a binary gray matter mask (>50% on the SPM12 gray
matter probability map smoothed to PET spatial resolu-
tion), with the exception of the pallidum, substantia nigra,
pons, and medulla because masking eliminated the ROI
for some or all of the subjects. Multiple background gray
matter, white matter, and cerebrospinal fluid regions were

also defined to provide whole-brain coverage for GTM
PVC. The mean gray matter/(gray matter + white matter)
fraction in the masked ROIs was 0.97 ± 0.03,
0.96 ± 0.03, and 0.96 ± 0.03 for the control, CBD, and
PSP groups, respectively, illustrating the predominance of
gray matter in the masked ROIs. To assess the impact of
PVC, time-activity curves were also extracted from the
same ROIs without the application of GTM PVC.
To quantify SV2A density, [11C]UCB-J nondis-

placeable binding potential (BPND) was determined,
both regionally and at the voxel level, using a basis
function implementation of the simplified reference tis-
sue model,38 with the reference tissue defined in the
centrum semiovale.39,40 The volume-weighted average
of the GTM PVC BPND values in the masked ROIs was
used as a global BPND metric. Group average BPND

images (illustrated in Fig. 1A) were obtained by spa-
tially normalizing each individual T1-weighted MRI
(and thereby the coregistered BPND map) to Montreal
Neurological Institute (MNI) space, and then to the
group template using ANTs.

Statistical Analysis
Statistical analyses used R software (version 3.6.2; R

Foundation for Statistical Computing, Vienna, Austria),
with analysis of covariance to compare regional [11C]
UCB-J BPND between the three groups (control, CBD,
and PSP), with age as a covariate of no interest. ROIs were:
frontal, temporal, parietal, and occipital lobes; cingulate
cortex, hippocampus, insula, amygdala, caudate nucleus,

TABLE 1. Demographics and neuropsychological profile for each participant cohort

Control CBD PSP F (P)

M:F 7:8 7:2 7:7 nsa

Age at [11C]UCB-J PET in years 68 (7.45) 70.56 (8.23) 72.79 (7.74) ns
Disease duration in years NA 3.94 (2.2) 4.28 (2.57) nsb

Education in years 13.69 (2.66) 12.78 (3.27) 12.77 (5.43) ns
ACE-R total (max. 100) 96.47 (2.88) 81.56 (10.83) 80.57 (15.02) 9.61 (<0.0004)
Attention_Orientation (max. 18) 17.87 (0.35) 16.89 (1.05) 16.43 (2.06) 4.11 (0.02)
Memory (max. 26) 24.53 (1.85) 20.67 (5.66) 21.43 (4.27) 3.50 (0.04)
Fluency (max. 14) 12.80 (1.15) 8.22 (2.86) 6.43 (3.44) 22.81 (<0.001)
Language (max. 26) 25.53 (0.92) 22.44 (5.34) 23.43 (5.21) ns
Visuospatial (max. 16) 15.73 (0.59) 13.33 (2.55) 12.86 (3.98) 4.46 (0.02)

MMSE (max. 30) 29.27 (1.33) 26.44 (3.13) 27.00 (2.88) 4.78 (0.01)
UPDRS (max. 132) 0 (0) 38.22 (14.81) 32.36 (16.38) nsb

PSPRS (max. 100) 0.13 (0.52) 26.78 (9.61) 29.21 (10.27) nsb

CBDRS (max. 124) 0.20 (0.77) 29.12 (13.52) 36.80 (20.41) nsb

MoCA (max. 30) 27.80 (1.74) 12.25 (12.96) 22.46 (2.96) 8.39 (<0.001)
INECO (max. 30) 26.00 (1.85) 14.6 0 (8.47) 17.70 (4.74) 17.22 (<0.001)
CDR sum of boxes (max. 32) 0.07 (0.26) 6.78 (4.71) 7.54 (6.55) 11.28 (<0.001)
CBI (max. 180) 2.47 (4.81) 27.44 (13.5) 42.43 (38.13) 9.97 (<0.001)
SEADL (max. 1) 0.99 (0.03) 0.56 (0.28) 0.60 (0.22) 10.54 (<0.001)

The results are given as mean (standard deviation). CBD here refers to CBS with a negative amyloid biomarker from [11C]PiB PET, and PSP refers to patients with
PSP-Richardson’s syndrome. The F-statistic and P values are derived from ANOVA. ns = nonsignificant at P < 0.05.
aChi-squared test.
bANOVA with PSP and CBD patients only.
M, male; F, female; PSPRS, Progressive Supranuclear Palsy Rating Scale; CBDRS, CBD functional rating scale; NA, nonapplicable; ANOVA, analysis of variance.
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nucleus accumbens, putamen, pallidum, thalamus, cerebel-
lum, substantia nigra, midbrain, pons, and medulla.
The relationships between [11C]UCB-J BPND, disease

severity (PSP and CBD rating scales), and cognition
(ACE-R) were tested through linear models of the patient
data, with age as a covariate of no interest.
The primary analyses used BPND determined follow-

ing GTM PVC, but all analyses were repeated using
BPND without PVC.

Results

Of the 15 patients with CBS, 6 had a cortical [11C]
PiB SUVR >1.21 and were therefore excluded from fur-
ther analysis in this article. The remaining groups (9
CBD, 14 PSP, and 15 controls) were matched in age, sex,
and education (Table 1). We observed typical cognitive
profiles, as summarized in Table 1: Patients were impaired

on memory, verbal fluency, language, and visuospatial
domains of the ACE-R, MMSE, and MoCA. There were
high endorsements on the CBI, and the CDR scale, with
impairment of activities of daily living on the Schwab and
England scale. Concurrent medications used by our par-
ticipants at the time of the [11C]UCB-J PET scan are out-
lined in Supporting Information Table S1. Four of our
patients (1 PSP, 3 CBD) were on dopaminergic medica-
tion and 9 on amantadine (3 PSP, 6 CBD).
Compared to controls, in patients there was a signifi-

cant global reduction in [11C]UCB-J BPND (Fig. 1A–C)
across all major cortical and subcortical areas (P < 0.05
false discovery rate [FDR] corrected for all ROIs shown
in Fig. 1C); regional BPND values for the three groups are
reported in Table 2. BPND in PSP and CBD was 20% to
50% lower than controls (P < 0.01), with the most severe
median reduction observed in the medulla, substantia
nigra, pallidum, midbrain, pons, and caudate nucleus in
patients with PSP and in the medulla, hippocampus,

FIG. 1. (A) Mean [11C]UCB-J BPND maps for control participants (top row), CBD (middle row), and PSP (bottom row); high and low BPND values are
shown by red and blue areas, respectively. (B) Reduction in global [11C]UCB-J BPND across patients compared to controls (P < 0.05). (C) Individual
regional GTM PVC [11C]UCB-J BPND values for control, CBD, and PSP participants, across major ROIs. Binding potential values for patients differed
significantly from controls in all the regions depicted (P < 0.05, FDR corrected). CBD here refers to CBS with a negative amyloid biomarker from
[11C]PiB PET, and PSP refers to patients with PSP-Richardson’s syndrome.
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TABLE 2. Mean (standard deviation) GTM PVC [11C]UCB-J BPND values per group for cortical and subcortical ROIs (surviving
FDR correction over 18 regions)

Region Control CBD PSP F (P)

Frontal lobe 2.96 (0.17) 2.60 (0.29) 2.48 (0.28) 15.05 (<0.0001)
Temporal lobe 2.68 (0.16) 2.30 (0.23) 2.17 (0.27) 19.34 (<0.0001)
Parietal lobe 3.11 (0.19) 2.75 (0.32) 2.63 (0.36) 10.10 (<0.0003)
Occipital lobe 2.98 (0.23) 2.66 (0.29) 2.48 (0.41) 8.80 (0.0008)
Cingulate 3.02 (0.21) 2.56 (0.26) 2.46 (0.28) 20.41 (<0.0001)
Insula 2.76 (0.15) 2.24 (0.26) 2.17 (0.27) 28.55 (<0.0001)
Amygdala 2.71 (0.20) 2.18 (0.34) 2.20 (0.33) 14.67 (<0.0001)
Nucleus accumbens 4.18 (0.31) 3.85 (0.46) 3.54 (0.33) 11.28 (0.0002)
Hippocampus 2.00 (0.20) 1.57 (0.29) 1.57 (0.30) 12.37 (<0.0001)
Caudate nucleus 3.12 (0.22) 2.59 (0.41) 2.48 (0.36) 15.59 (<0.0001)
Pallidum 1.90 (0.22) 1.65 (0.24) 1.27 (0.31) 20.69 (<0.0001)a

Putamen 3.99 (0.24) 3.43 (0.32) 3.28 (0.37) 19.94 (<0.0001)
Thalamus 2.86 (0.25) 2.29 (0.45) 2.25 (0.44) 11.23 (<0.0002)
Cerebellum 2.13 (0.22) 1.75 (0.30) 1.69 (0.28) 11.50 (0.0001)
Midbrain 2.61 (0.29) 2.16 (0.38) 1.83 (0.42) 16.61 (<0.0001)
Substantia Nigra 2.13 (0.28) 1.72 (0.34) 1.32 (0.59) 12.79 (<0.0001)a

Pons 0.93 (0.13) 0.75 (0.18) 0.71 (0.18) 7.69 (0.002)
Medulla 0.62 (0.16) 0.37 (0.17) 0.28 (0.24) 12.04 (<0.001)

CBD here refers to CBS with a negative amyloid biomarker from [11C]PiB PET, and PSP refers to patients with PSP-Richardson’s syndrome. F-statistic and P
values derived from an ANCOVA across the three groups, with age as a covariate of no interest.
aThe significant difference here is driven by the PSP group only.

FIG. 2. (A) Cortical and subcortical gray matter volumes, normalized against the corresponding volumes in controls, were significantly reduced in the
caudate nucleus and thalamus in CBD; and in frontal, temporal, parietal, and occipital lobes, as well as in the caudate nucleus, and thalamus in PSP,
P < 0.05. (B) Mean-centered [11C]UCB-J BPND across cortical and subcortical ROIs normalized against the corresponding BPND values in controls,
demonstrating a median reduction of 20% to 50%. CBD here refers to CBS with a negative amyloid biomarker from [11C]PiB PET, and PSP refers to
patients with PSP-Richardson’s syndrome.
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amygdala, caudate nucleus, insula, and thalamus in
patients with CBD. Post-hoc analysis revealed that the sig-
nificant differences in BPND between patients and controls
in the pallidum and substantia nigra were mainly driven
by the PSP cohort. Using data without GTM PVC, the
pattern of statistically significant differences in BPND for
the reported regions in Table 2 remains, P < 0.001.
The reduction in synaptic density was noted even in

areas of the brain that did not show significant gray matter
atrophy. Figure 2A shows the group differences in gray
matter volume normalized against the mean of the control
group; the significant areas of gray matter volume loss
were in the caudate nucleus (P = 0.01) and thalamus
(P = 0.04) in the CBD cohort and in the frontal (P < 0.01),
temporal (P = 0.04), parietal (P < 0.01), and occipital lobes
(P < 0.01), caudate nucleus (P < 0.001), and thalamus
(P < 0.01) in the PSP cohort. The reduction in [11C]UCB-J
BPND, however, was more extensive and consistently signif-
icantly different across all major cortical and subcortical
areas, as shown in the normalized plot in Figure 2B (bind-
ing potentials were normalized against the mean binding
potential of the control cohort for each ROI).
Correlations between [11C]UCB-J BPND and both

global cognition and disease severity are given in Fig-
ure 3. A significant positive correlation was observed
between [11C]UCB-J BPND and the ACE-R total score
(R = 0.52; P = 0.01; Fig. 3A). There was a significant
negative correlation between [11C]UCB-J binding and
the PSP (R = –0.61; P < 0.01) and CBD (R = –0.72;
P < 0.001) rating scales (Fig. 3B,C).

Discussion

The principal result of this study is a widespread
reduction in synaptic density in PSP-Richardson’s syn-
drome and amyloid-negative CBS (which we define as

CBD). This accords with postmortem estimates of syn-
aptic loss in PSP and CBD, using synaptophysin immu-
nohistochemistry,6 imaging of neurite density in PSP,41

and morphological studies of cortical dendrites in the
closely related condition of frontotemporal lobe demen-
tia.42 Indirect evidence of synaptic loss, from consequen-
tial reduction in metabolism, comes from [18F]FDG PET
changes in frontal, temporal, and parietal lobes.43-46

However, PET imaging with the ligand [11C]UCB-J pro-
vides direct evidence in vivo of severe and extensive loss
of cortical and subcortical synapses, including areas of the
brain that are minimally atrophic.47

PSP and CBD are progressive, with an average dis-
ease duration of 5 to 8 years from symptom onset.48 In
our clinically diagnosed CBD and PSP groups, mean
symptom duration at the time of PET was 3.5 years,
and our patients were likely to be approximately mid-
way through their symptomatic disease course (not
including a potentially long presymptomatic period).
The median reduction of 20% (and maximal 50%) in
[11C]UCB-J binding observed in vivo, compared to con-
trols, is therefore in keeping with the predictions from
postmortem data.
The synaptic loss observed in our study was wide-

spread, extending beyond the regions that are arguably
most associated with the diseases. In PSP, from post-
mortem studies, these include basal ganglia, thalamus,
substantia nigra, premotor cortex, as well as the den-
tate nucleus and cerebellar white matter. In CBD, areas
associated with the disease include cortex, thalamus,
basal ganglia, and brainstem, without cerebellar
involvement.48-50 However, in our study, the loss of
synapses in PSP is global across the cortex, and not
confined to the premotor and motor areas, and extends
beyond the substantia nigra in the brainstem with pon-
tine and medullary involvement. Loss of synapses in the
cerebellum in PSP echoes pathological studies of tau

FIG. 3. Correlations between global [11C]UCB-J BPND and total ACE-R score (A), total PSP rating scale (B), and total CBD rating scale (C) for the two
patient groups. CBD here refers to CBS with a negative amyloid biomarker from [11C]PiB PET, and PSP refers to patients with PSP-Richardson’s
syndrome.
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distribution in this disease.49 Interestingly, the cerebel-
lum was also markedly abnormal in CBD; although
cerebellar atrophy and tau accumulation are not typical
associations of CBD.49 Cerebellar synaptic loss in CBD
may therefore represent cerebellar diaschisis in response
to widespread cortical pathology and loss of
corticocerebellar projections; a small minority of per-
sons in an amyloid-negative CBS cohort may have PSP
as the underlying cause for their CBS, although this is
unlikely to be sufficient to drive the group-wise effect.
Preclinical models of tauopathy suggest early syn-

aptotoxicity with reduced plasticity and density,11 in
response to soluble oligomeric tau aggregates12 and
inflammation.51 The toxicity associated with tau
pathology leading to synapse loss is complex and
involves direct and indirect pathways (reviewed in
Spires-Jones and colleagues52). Naturally occurring tau
plays a role in synaptic function through modulating
microtubule and axonal stability; disruptions to this
machinery lead to prevention of the trafficking of essen-
tial components to synapses, such as synaptic recep-
tors53 and mitochondria. Indeed, overexpression of tau
interferes with mitochondria transport54 and contrib-
utes to hyperexcitability of neurons and impaired cal-
cium influx in transgenic mouse models (rTg4510).55

The global nature of synaptic reduction suggests a more
widespread pathology in the primary tauopathies of
PSP and CBD beyond the areas that are histologically
reported as harboring a high tau burden, such as the
basal ganglia, thalamus, and brainstem.56 This may, in
part, be explained by the global damage caused by olig-
omers of tau, which are not easily visible on tau PET
imaging or histology. In support of this are biochemical
studies that report tau accumulation in both gray and
white matter by western blot in PSP, but not necessarily
by immunohistochemistry.57

We observed a significant correlation between synap-
tic loss and disease severity in PSP and amyloid-nega-
tive CBS. Synaptic loss correlates with cognitive
impairment in another clinical tauopathy, AD,13,58 and
preclinical models of this.59,60 Our in vivo PET results
support the potential use of synaptic PET as a marker
of disease and progression, but longitudinal data are
required. Synaptic PET may support early-stage clinical
trials in PSP and CBS/CBD; it is encouraging, in this lat-
ter respect, that [11C]UCB-J PET is sensitive to changes
in synaptic density; for example, in response to treat-
ment with the synaptic modulator, Saracatinib.61

Our study has several limitations. Although the sam-
ple size is small, it is adequately powered in view of the
large effect sizes predicted. However, subtler relation-
ships with mild disease, progression, or individual clini-
cal features, or phenotypic variants of PSP and CBS,
require larger studies. We acknowledge the potential
for off-target binding, but preclinical data indicate very
high correlations between UCB-J and synaptophysin, a

marker of presynaptic vesicular density.25 Our diagno-
ses were clinical, without neuropathology, although the
clinicopathological correlations of PSP-Richardson’s
syndrome are very high, and in the absence of AD, the
clinicopathological correlation of CBS with a 4R-
tauopathy (CBD or PSP) is also high.18 Binding poten-
tials for SV2A radioligands such as [11C]UCB-J can be
confounded by the use of concurrent medication that
may bind to SV2A. We did not enroll any individuals
taking levetiracetam or any member of this family of
drugs that are SV2A-specific ligands.62 Previously
reported studies using [11C]UCB-J in disease have usu-
ally not commented on medications used by partici-
pants; however, one study using this ligand in major
depressive disorders reports exclusion of participants
on psychotropic medications in the 2 months preceding
PET scanning63; whereas many of our PSP and CBD
patients are on medications falling under the psychotro-
pic umbrella, to our knowledge, none of these bind
to SV2A.
Arterial blood sampling was not carried out in this

study; we used reference tissue modeling to reduce the
demand on our patient cohort. Reference tissue model-
ing of [11C]UCB-J with the centrum semiovale as the
reference tissue has been verified against arterial input
function compartmental modeling in healthy con-
trols39,40 and in AD.64 To assess the validity of the cen-
trum semiovale in our cohort, we determined the mean
total distribution volume (VT) for each of our subject
groups using standard arterial input function data from
the literature26,65; this approach assumed that the stan-
dard input function was equally valid for all groups.
This analysis indicated a small positive bias in centrum
semiovale VT for CBD (5%) and less so PSP (2%) rela-
tive to that in controls, which would lead to a commen-
surate reduction in BPND under the assumption that the
nondisplaceable distribution volume in the target ROIs
remains invariant. These biases cannot, however,
explain the much greater BPND reductions observed for
CBD and PSP, which is especially true for PSP. Indeed,
scaling BPND in the CBD and PSP cohorts to account
for the above biases in centrum semiovale VT produced
a similar pattern of significant global reduction in BPND

for patients compared to controls, except that the sig-
nificant differences in the midbrain, pons, substantia
nigra, pallidum, and occipital lobe were primarily
driven by the PSP cohort in the post-hoc analysis.
The therapeutic challenge in tauopathies is partly

attributable to the complex nature of the underlying
pathology. Early-stage trials will require early accurate
diagnosis, although diagnosis is typically made 3 years
after symptom onset.66,67 It is unlikely that synaptic
PET could provide presymptomatic diagnosis in rare
conditions, but it is a promising tool to characterize
pathogenetic mechanisms, monitor progression, and
assess response to experimental medicines.68
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