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Abstract. QVT Relations (QVT-R) is the standard language proposed
by the OMG to specify bidirectional model transformations. Unfortu-
nately, in part due to ambiguities and omissions in the original seman-
tics, acceptance and development of effective tool support has been slow.
Recently, the checking semantics of QVT-R has been clarified and for-
malized. In this paper we propose a QVT-R tool that complies to such
semantics. Unlike any other existing tool, it also supports meta-models
enriched with OCL constraints (thus avoiding returning ill-formed mod-
els), and proposes an alternative enforcement semantics that works ac-
cording to the simple and predictable “principle of least change”. The im-
plementation is based on an embedding of both QVT-R transformations
and UML class diagrams (annotated with OCL) in Alloy, a lightweight
formal specification language with support for automatic model finding
via SAT solving.

1 Introduction

Model-Driven Engineering (MDE) is an approach to software development that
focuses on models as the primary development artifact. In MDE different models
may capture different views of the same system (typically different models are
used to specify structural and dynamic issues) or may be used at different lev-
els of abstraction (code is obtained by refining platform-independent models to
platform-specific ones). All these (possibly overlapping) models should be kept
somehow consistent, and changes to one model should be propagated to all the
others in a consistent manner. Ideally, specifications of transformations between
models should be bidirectional, in the sense that a single artifact denotes trans-
formations that can be used in both directions. Moreover, these transformations
cannot just map a source to a target model and vice-versa: if some source in-
formation is discarded by the transformation, to propagate an update in the
target back to a new consistent source access to the original source model is also
required, so that discarded information can be recovered.

To support the MDE approach the Object Management Group (OMG) has
launched the Model-Driven Architecture (MDA) initiative, which prescribed the
usage of UML [16] and OCL [17] for the specification of (object oriented) models
and constraints over them. To specify transformations between models, the OMG
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proposed the Query/View/Transformation (QVT) standard [15]. While QVT
provides three different languages for the specification of transformations, the
most relevant to MDE is the QVT Relations (QVT-R) language, that allows the
specification of a bidirectional transformation by defining a single declarative
consistency relation between two (or more) meta-models. Given this specification
the transformation can be run in two modes: checkonly, to test if two models are
consistent according to the specified relation; or enforce, that given two models
and an execution direction (picking one of them as the target) updates the target
model in order to recover consistency. The standard prescribes a “check-before-
enforce” semantics, that is, enforce mode cannot modify the target if the models
happen to be already consistent according to checking semantics.

Effective tool support for QVT-R has been slow to emerge, which hinders the
universal adoption of this standard. In part, this is due to the incomplete and
ambiguous semantics defined in [15]. While the checking semantics has recently
been clarified and formalized [19, 3, 9], the enforcement semantics still remains
largely obscure and even incompatible with other OMG standards. Namely, it
completely ignores possible OCL constraints over the meta-models, thus allow-
ing updates that can lead to ill-formed target models. Likewise, none of the
existing QVT-R model transformation tools supports such constraints, which
makes them unusable in most realistic scenarios. Unfortunately, there are other
problems that affect them. Some do not even comply to the standard syntax
and support only a “QVT-like” language (including not providing both running
modes as required by the standard). Others support only a subset of QVT-R that
is not expressive enough to support truly non-bijective bidirectional transforma-
tions (for example, ignoring the original target model in the enforce mode). Some
purposely disregard QVT-R intended semantics (including checking semantics)
and implementing a new (still unclear and ambiguous) one. In most cases it is
not clear if the supported checking semantics is equivalent to the one formal-
ized in [19, 3, 9]. And finally, none clarify the problems and ambiguities in the
standard concerning enforcement semantics, and none presents a simple enough
alternative for this mode that makes its behavior predictable to the user.

In this paper, we propose a QVT-R bidirectional model transformation tool
that addresses all these issues. Both the meta-models and transformation spec-
ifications may be annotated with OCL, and it supports a large subset of the
standard QVT-R language, including execution of both modes independently as
prescribed. The main restriction is that recursion must be non-circular (or well-
founded), which is satisfied in most of the interesting case-studies. The checking
semantics closely follows the one specified in the standard, being equivalent to
the one formalized in [19, 3, 9]. Finally, instead of the ambiguous (and OCL in-
compatible) enforcement semantics proposed in the standard, our tool follows
the clear and predictable principle of least change [13], and restores consistency
by simply returning target models that are at a minimal distance from the
original. In particular, the“check-before-enforce” policy required by QVT-R is
trivially satisfied by this semantics. Our tool supports two different mechanisms
to measure the distance between two models: the graph edit distance (GED) [21],



that just counts insertions and deletions of nodes and edges in the graph that
corresponds to a model; and a variation where the user is allowed to parame-
terize which operations should count as valid edits, by attaching them to the
meta-model and specifying their pre- and post-conditions in OCL.

To achieve this, we propose an embedding of both QVT-R transformations
and UML class diagrams (annotated with OCL) in Alloy [11], a lightweight for-
mal specification language with support for automatic model finding via SAT
solving. Alloy is based on relational logic, which has been shown to be very effec-
tive to validate and verify object-oriented models. Its relation with the MDA has
also been explored before. In particular, tools to translate UML class diagrams
annotated with OCL to Alloy have been proposed [1, 6], on top of which we build
our embedding. The proposed tool already proved effective in debugging exist-
ing transformations, namely helping us unveiling several errors in the well-known
object-relational mapping that illustrates the QVT-R specification [15].

Section 2 introduces the QVT-R language, describes the standard checking
semantics, presents some of the problems with the enforcement semantics, and
proposes and formalizes a simpler alternative based one the principle of least
change. Section 3 presents our embedding of UML class diagrams (annotated
with OCL) and QVT-R transformations in Alloy. Finally, Section 4 analyzes
some related work, while Section 5 draws conclusions and points to future work.

2 QVT Relations

In this section we introduce the basic concepts and the semantics of the QVT-R
language. A more detailed presentation can be found in the standard [15].

2.1 Basic concepts

A QVT-R specification consists of a transformation T between a set of models
that states under which conditions they are considered consistent. For the re-
mainder of this paper, we will restrict ourselves to transformations between two
meta-models for simplicity purposes, although most concepts could be general-
ized to n-directional transformations. From T , QVT-R requires the inference of
three artifacts: a relation T ⊆ M×N that tests if two models m ∈ M and n ∈ N
are consistent and transformations

−→
T : M ×N → N and

←−
T : M ×N → M that

propagate changes on a source model to a target model, restoring consistency be-
tween the two. Transformations can be executed in two modes: checkonly mode,
where the models are simply checked for consistency, denoted as T (m,n); and

enforce mode, where
−→
T or

←−
T is applied to inconsistent models in order to restore

consistency, depending on which of the two models should be updated. Note that
both transformations take as extra argument the original model: if we originally

had consistent models m ∈ M and n ∈ N , and m is updated to m ′,
−→
T takes as

input both m ′ and n to produce the new consistent n ′. This way we are able to
retrieve from n information discarded in the transformation. This formalization
of QVT-R is inspired by the concept of maintainer [13], and was first proposed
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Fig. 1. Class diagrams of the UML and RDBMS meta-models.

in [18]. Naturally, when the transformations propagate an update the result is
expected to be consistent. Formally, we say that the transformation is correct if:

∀ m ∈ M ,n ∈ N : T (m,
−→
T (m,n)) ∧T (

←−
T (m,n),n)

The transformations are also required to follow the “check-before-enforce” policy
(also known as hippocraticness [18]), that can be formalized as follows:

∀ m ∈ M ,n ∈ N : T (m,n)⇒
−→
T (m,n) = n ∧

←−
T (m,n) = m

A QVT-R transformation is defined by a set of relations. A relation consists
of a domain pattern for each meta-model of the transformation, that defines
which objects of the model it relates by pattern matching. It also may include
when and where constraints, that act as a kind of pre- and post-conditions for
the relation application, respectively. These constraints may contain arbitrary
OCL expressions. The abstract syntax of a relation is the following:

[top] relation R { [variable declarations]
domain M a : A { πM }

domain N b : B { πN }

[when { ψ }] [where { φ }] }

In relation R, the domain pattern for meta-model M consists of a domain vari-
able a and a template πM for its properties, which candidate objects of type A
must match. Likewise for the domain pattern πN for meta-model N . To simplify
the presentation, the above syntax restricts relations to have exactly one domain
variable per meta-model. In a pattern template, an equality denotes an inclu-
sion test if the multiplicity of the property is different from one. Templates can
be complemented with arbitrary OCL constraints. Relations can optionally be
marked as top, in which case they must hold for all objects of the specified class.
Otherwise, they are only required to hold for particular objects when invoked in
a where clause.

As an example, we will define a simplified version of the classic object-
relational mapping transformation that illustrates the QVT-R specification [15].
Although simplified, this version still exhibits some of the problems of the orig-
inal version, which we will describe in the next section. Figure 1 depicts a
simplified version of the object and relational meta-models, including possi-
ble edit operations. Figure 2 defines a transformation Uml2Rdbms, whose goal



transformation Uml2Rdbms

(uml:UML,rdbms:RDBMS) {

// PackageToSchema

top relation P2S {

n:String;

domain UML p:Package {

name=n };

domain RDBMS s:Schema {

name=n }; }

// ClassToTable

top relation C2T {

n:String;

domain UML c:Class {

persistent=true,

namespace=p:Package,

name=n };

domain RDBMS t:Table {

schema=s:Schema,

name=n };

when { P2S(p,s); }

where { A2C(c,t); } }

// AttributeToColumn

relation A2C {

domain UML c:Class {};

domain RDBMS t:Table {};

where { PA2C(c,t);

SA2C(c,t); } }

// PrimitiveAttributeToColumn

relation PA2C {

n:String;

domain UML c:Class {

attribute=a:Attribute {

name=n } };

domain RDBMS t:Table {

column=cl:Column {

name=n } }; }

// SuperAttributeToColumn

relation SA2C {

domain UML c:Class {

general=g:Class {}};

domain RDBMS t:Table {};

where { A2C(g,t); } } }

Fig. 2. Simplified version of the Uml2Rdbms QVT-R transformation.

is to map every persistent class in a package to a table in a scheme with the
same name. Each table should contain a column for each attribute (includ-
ing inherited ones) of the corresponding class. A constraint of the UML meta-
model that cannot be captured by class diagrams, neither QVT-R key con-
straints, is the requirement that the association general should be acyclic.
One must resort to OCL to express it, for example by adding the invariant
context Class inv: not self.closure(general)->includes(self).

There are two top relations: P2S that maps each package to a schema with
the same name, and C2T that maps each class to a table with the same name. To
ensure that classes are only mapped to tables if they belong to related packages
and schemas, the relation C2T invokes P2S (with concrete domain variables) in
the when clause. For a concrete class c and table t, C2T also calls relation A2C in
the where clause, that will be responsible to map the attributes of c to columns
of t. A2C directly calls PA2C, that translates the attributes directly declared in
c to columns on table t, and SA2C, that recursively calls A2C on the generals
of c, so that inherited attributes are also translated to columns of t.

2.2 Checking semantics

QVT-R’s checking semantics assesses if two models are consistent according to
the specified transformation. Although the consistency test is by itself important,
it is also an essential feature in enforce mode since it must “check-before-enforce”.



The semantics of a relation differs whether it is invoked at the top-level or with
concrete domain variables. The specified top-level semantics is directional. As
such, from each relation R two consistency relations RI :M ×N and RJ :M ×N
must be derived, to check if m : M is R-consistent with n : N and if n : N is
R-consistent with m : M , respectively. The former can be formalized as follows:

RI (m : M ,n : N ) ≡ ∀ xs | ψB ∧ πM ⇒ (∃ ys | πN ∧ φB)
where xs = fv(ψ ∧ πM ) ∪ {a : A}, ys = (fv(πN ∧ φ) ∪ {b : B })− xs

Here fv(e) retrieves the set of free variables from the expression e, so xs denotes
the set of variables used in the when constraint and the source pattern, while
ys is the set of variables used exclusively in the where constraint and in the
target pattern. Given a formula ψ, ψB denotes the same formula with all rela-
tion invocations replaced by the respective directional version. This semantics
is rather straightforward: essentially, for every element a : A that satisfies the
when condition and matches the M domain pattern, there must exist an element
b :B that satisfies the where condition and matches the N domain pattern. The
semantics in the opposite direction is dual. Two models are consistent according
to a QVT-R transformation T if they are consistent for all top relations in both
directions. Assuming that TopT is the set of all top level relations we have:

T (m : M ,n : N ) ≡ ∀ R : TopT | RI (m,n) ∧ RJ (m,n)

The QVT-R standard [15] defines rather precisely the top-level semantics,
but is omissive about the semantics of relations invoked with concrete domain
variables. Recent works on the formalization of QVT-R check semantics [19, 3,
9] clarify that it is essentially the same as the top-level – still directional, but
defined over specific meta-model classes by fixing the domain variables. As such,
from each relation R with domain variables of type A and B , two consistency
relations RB :A×B and RC :A×B are inferred, to check if two concrete objects
a and b are consistent:

RB (a : A, b : B) ≡ ∀ xs | ψB ∧ πM ⇒ (∃ ys | πN ∧ φB)
where xs = fv(ψ ∧ πM ), ys = fv(πN ∧ φ)− xs

Although it may be tempting (and probably more intuitive) to define RI in
terms of RB, that is RI (m,n) ≡ ∀ a : A | ∃ b : B | RB (a, b), this definition
is not semantically equivalent to the one presented above, as already discussed
in [3]. For instance, consider the semantics (in the direction of UML) of relation
PA2C from the Uml2Rdbms transformation:

PA2CJ (m : UML,n : RDBMS) ≡
∀ t : Table, cl : Column,n : String | cl ∈ t .column ∧ cl .name = n ⇒
∃ c : Class, a : Attribute | a ∈ c.attribute ∧ a.name = n

PA2CC (c : Class, t : Table) ≡
∀ cl : Column,n : String | cl ∈ t .column ∧ cl .name = n ⇒
∃ a : Attribute | a ∈ c.attribute ∧ a.name = n



Consider a simple UML model where a Class a with an Attribute x extends
a Class b with an Attribute y . Consider also a RDBMS with a Table a with
Columns x and y . While PA2CJ holds for this pair of instances, PA2CC returns
false for every pair of Class and Table.

Due to this asymmetry and the directionality of the semantics, the behavior of
QVT-R transformations may not be the expected one. In particular, Uml2Rdbms
as defined in the standard does not have a bidirectional semantics, in the sense
that the only pairs of consistent and valid finite models are ones where all classes
are non-persistent and there are no tables. To see why this happens, consider the
relations A2C and SA2C when checked in the direction of Class. These relations
call each other recursively, and their non top-level semantics is:

A2CC (c : Class, t : Table) ≡ PA2CC (c, t) ∧ SA2CC (c, t)
SA2CC (c : Class, t : Table) ≡ ∃ g : Class | g ∈ c.general ∧ A2CC (g , t)

Assuming the transformation takes into account the OCL constraint requiring
general to be acyclic, A2CC (c, t) never holds in a finite model, since c will
be required to have an infinite ascending chain of generals. This is due to the
under-restrictive SA2C domain pattern in the RDBMS side (empty in this case),
that requires every Table to have a matching Class with a general, which, due
to recursion, is also required to have a general, and so on. This is but one of the
problems that occur in the original specification of this transformation, and is
another example of the ambiguities that prevail in the QVT standard [15]: while
it requires consistency to be checked in both directions, the case-study used to
illustrate it was clearly not developed with bidirectionality in mind. Note that
checking consistency only in the direction of RDBMS does not suffice, since, for
example, it will not prevent spurious tables to appear in the target schema.

Concerning recursion we can distinguish two situations: one is well-founded
recursion, where the call graph of the transformation contains a loop, but in any
evaluation it is traversed only finitely many times; another is cyclic (or infinite)
recursion, where such a loop may actually be traversed infinitely many times
(e.g., when a relation directly or indirectly calls itself with the same arguments).
The semantics of well-founded recursion is not problematic, but the standard is
omissive about what should happen when infinite recursion occurs. A possible
interpretation is that it should not be allowed, although in general it is undecid-
able to detect it. Similarly to some QVT-R formalizations [19, 9], the embedding
presented in this paper is not well-defined when infinite recursion occurs.

Recently, a formal semantics of QVT-R was proposed [3] that is well-defined
even in presence of infinite recursion, by resorting to the modal mu calculus. To
see why taking OCL constraints into account is fundamental, a transformation
conforming to this semantics, but that ignores the requirement that general is
acyclic, would consider a (ill-formed) UML model with a single persistent Class

a that generalizes itself consistent with a RDBMS model with a Table a.
To prevent the above described problem in the Uml2Rdbms transformation,

one could tag columns with the path to the particular general they originated
from, and then refine the RDBMS domain pattern to prevent problematic recur-
sive calls. A simpler alternative is to resort to the transitive closure operation



(recently added to OCL [17]), and just map at once all declared or inherited
attributes of a given class to columns of the respective table. In this new version
of Uml2Rdbms (that will be considered in the remainder of the paper), A2C, PA2C
and SA2C are replaced just by the following alternative definition of A2C:

relation A2C { cn:String; a:Attribute; g:Class;

domain UML c:Class {} { (c->closure(general)->includes(g) or g=c) and

g.attributes->includes(a) and a.name=cn };

domain RDBMS t:Table { column=cl:Column { name=cn } }; }

The OCL constraint in the UML domain pattern acts as a pre-condition when
applying the transformation in the direction of RDBMS, and as a post-condition
in the other direction. As such, it could not be specified in the when clause, since
it would act as (an undesired) pre-condition for both scenarios.

2.3 Enforcement semantics

Unlike the checking semantics, and as far as we know, no attempt has been made
to completely formalize the enforcement semantics described in the standard [15].
Although it has many ambiguities and omissions, due to the reasons presented
next, we believe that the intended semantics for this mode is quite undesirable.
Instead, we propose an alternative that is easy to formalize, more flexible, and
more predictable to the end-user.

In the QVT-R standard, update propagation is required to be determinis-
tic. This is a desirable property, since it makes its behavior more predictable.
However, to ensure determinism, every transformation is required to follow very
stringent syntactic rules that reduce update translation to a trivial imperative
procedure. Namely, it should be possible to order all constraints in a relation
(except for the target domain pattern), such that the value of every free variable
is fixed by a previous constraint. Although not clarified in the standard, this
means that relations that are invoked in when and where constraints are either
invoked with previously bound variables, or are required to also be determin-
istic, even if the intention was to only make update propagation deterministic.
For example, in transformation Uml2Rdbms, update propagation in the direction
of RDBMS will only be deterministic for relation C2T if at most one s is consistent
with p according to relation P2S (note that s is still free in the when clause). In
this particular example that happens to be true, but in general such determinism
is undesirable since it forces relations to be one-to-one mappings, limiting the
expressiveness of the language. Moreover, it defeats the purpose of a declarative
transformation language, since one is forced to think in terms of imperative exe-
cution and write more verbose transformations. For example, our simpler version
of A2C using transitive closure would not be allowed, since the value of g is not
known a priori when enforcing consistency in the direction of UML.

Another problem is the predictability of update propagation. Being determin-
istic is just part of the story – it should be clear to the user why some particular
element was chosen to be updated instead of another. The only mechanism pro-
posed by QVT-R to control updatability are keys. For example, we could add



the command key Table (name, schema); to our running example to assert
that tables are uniquely identified by the pair of properties name and schema. If
an update is required on a table to restore consistency (for example, when an
attribute is added to a class), such key is used to find a matching table. When
found, an update is performed, otherwise a new table is created. This works well
when all domains involved in relations have natural keys, which again points
to have only one-to-one mappings, but fails if such keys do not exist. In those
cases, the standard prescribes that update propagation should always be made
by means of creation of new elements, even if sometimes a simple update to an
existing element would suffice. Since creation requires defaults for mandatory
(multiplicity one) properties, this would result in models with little resemblance
with the original (which would basically be discarded).

Our alternative enforcement semantics is based on the principle of least
change, first proposed in the context of maintainers [13], and that enforces
predictability by requiring updates to be as small as possible. QVT-R “check-
before-enforce” policy is just a particular case of this more general principle. Let
∆M : M ×M → N be an operation that computes the update distance between
elements of M . Then, the principle of least change states that the models re-

turned by the transformations
−→
T and

←−
T are just the consistent models closest

to the original. Formally, we have:

∀ m ∈ M ,n,n ′ ∈ N : T (m,n ′)⇒ ∆N (
−→
T (m,n),n) 6 ∆N (n ′,n)

∀ m,n ′ ∈ M ,n ∈ N : T (m ′,n)⇒ ∆M (
←−
T (m,n),m) 6 ∆M (m ′,m)

Assuming that the distance is only null when the model is unchanged (i.e.,
∆ (n,n ′) = 0 ≡ n = n ′), it is trivial to show that these properties reduce to
hippocraticness when the models m and n are already consistent. Note, that this
principle by itself does not ensure determinism, although it reduces substantially
the set of possible results. If among the returned models the user further wishes
to favor a particular subset, keys or OCL constraints can be added to the meta-
model to guide the transformation engine. In the next section we will describe
the implementation of the proposed semantics. We will also propose two different
techniques to measure update distance between models. In one of them, the user
is allowed to parameterize which operations should count as valid edits, thus
providing an extra mechanism to achieve determinism if the user so desires.

3 Embedding QVT-R in Alloy

In this section we present our embedding of QVT-R in Alloy [11]. Due to space
limitations some knowledge of Alloy will be assumed, although we believe most
definitions will be clear from context.

3.1 UML class diagrams annotated with OCL

The models upon which our transformations are defined consist of UML class di-
agrams annotated with OCL constraints. Some translations have been proposed



to embed such models in Alloy, namely [1, 6]. We will base our embedding on
the translation proposed in [6], since, unlike other proposals, it covers an expres-
sive OCL subset that includes closure and operation specification via pre- and
pos-conditions. Here, we will just briefly present this translation.

Classes and associations (including attributes) can be directly translated to
signatures and relations in Alloy. Likewise for the inheritance relationship, that
Alloy also supports. Since Alloy instances are built from immutable atoms, we
resort to the well-known local state idiom [11] to capture updates to a given
model. This means that a special signature will be introduced to represent each
meta-model, whose atoms will denote different models (or evolutions of a given
model). To each relation (representing an association or an attribute) an extra
column of this type is added, to allow its value to change in different models.
We also extend the translation proposed in [6] to allow classes to have different
elements in different models: for each class a special binary relation with the same
name will capture the objects of that class that belong to each model. Boolean
attributes are encoded similarly: a binary relation captures which objects have
the attribute set to true in each model. For example, the Class class of our UML
meta-model is translated to the following signature declaration.

sig Class { class : set UML, attribute : Attribute -> UML,

general : Class -> UML, namespace : Package -> UML,

name : String -> UML, persistent : set UML }

The binary relation class captures the Class objects that exist in each UML

model. The remaining relations model the respective Class associations and
attributes. With the relational composition operator we can access the values of
these relations for a given UML model m. For example, general.m is a relation
that maps each Class to its general in model m, and persistent.m is the set
of Classes that have the attribute persistent set to true in that model.

Constraints must also be generated to ensure the correct multiplicities, and
that relations only relate elements in the same model (inclusion dependencies).
For example, fact all m:UML | namespace.m in class.m -> one package.m

is generated to capture the cardinality constraints of association namespace,
and to force it, for each UML model m, to be a subset of the cartesian prod-
uct between class.m and package.m (respectively, the sets of Classes and
Packages of model m). OCL invariants are also automatically translated to
Alloy facts, resulting in universal quantifications over the given type. For ex-
ample, the OCL invariant stating that general is acyclic is translated to Al-
loy as all m:UML, self:class.m | self not in self.^(general.m), where
^(general.m) is the transitive closure of relation general projected over m.

3.2 QVT-R transformations

For each relation R we declare two Alloy predicates to specify RB and RC.
Besides the respective domains elements, these are also parameterized by the
models they are being applied to. Since in Alloy predicates cannot call each



other recursively, predicates RB and RC are defined in terms of auxiliary rela-
tions specified by comprehension. Top relations RI and RJ are also specified
by predicates, which are only parameterized by the models. The definition of all
these predicates follows closely the formalization of Section 2.2. For example,
C2TI is specified as follows:

pred When_C2T_RDBMS [m:UML, n:RDBMS, p:Package, s:Schema] {

P2S_RDBMS[m,n,p,s] }

pred Pattern_C2T_UML [m:UML, c:Class, n:String, p:Package] {

n in c.name.m && c in persistent.m && p in c.namespace.m }

. . .
pred Top_C2T_RDBMS [m:UML,n:RDBMS] {

all c:class.m, n:String, p:package.m, s:schema.n |

When_C2T_RDBMS[m,n,p,s] && Pattern_C2T_UML[m,c,n,p] =>

some t:table.n |

Pattern_C2T_RDBMS[n,t,n,s] && Where_A2C_RDBMS[m,n,c,t] }

Predicates are used to specify the when and where clauses, and the domain pat-
terns of each relation. Note that predicate P2S RDBMS is the predicate specifying
P2SB. Note also how, in the specification of C2TI, quantifications are restricted
to range over the respective models.

The checking semantics of the transformation is a predicate that checks all
top relations in both directions. In our running example we have:

pred Uml2Rdbms [m:UML,n:RDBMS]{ Top_P2S_RDBMS[m,n] && Top_P2S_UML[m,n]

&& Top_C2T_RDBMS[m,n] && Top_C2T_UML[m,n] }

Regarding enforcement semantics, as described in Section 2.3, we implement
the principle of least change, which requires the measurement of the update dis-
tance between two models. We propose two different mechanisms for measuring
such distance. The first one is the graph edit distance (GED) [21], which counts
the distance between two graphs as the number of node and edge insertions and
deletions needed to obtain one from the other. Note that an Alloy instance is
isomorphic to a labelled graph whose nodes are the atoms, and whose edges are
tuples in relations. With this mechanism, ∆UML can be computed as follows:

fun Delta_UML [m,m’:UML] : Int {

(#((class.m - class.m’) + (class.m’ - class.m))).plus[

(#((name.m - name.m’) + (name.m’ - name.m))).plus[. . .]] }

Assuming m’ represents an updated version of m, this function sums up, for every
signature and relation, the size of their symmetric difference in both models.
To avoid Alloy’s standard wrap around semantics for integers, model finding is
executed with option Forbid Overflow [14].

This simple definition for distance assumes a fixed repertoire of edit oper-
ations which may not be desirable. In particular, there is no control over the
“cost” of complex operations. For example, changing the name of a class will
have a cost of 2, since it requires deleting the current name edge and inserting a
new one, while adding a new attribute to a class will cost 3, since it requires cre-
ating a new attribute, setting its name, and adding it to the class. One may wish



both these operations to be atomic edits and have the same unitary cost. Also,
one may wish to allow only particular edits in order to control non-determinism.

As such, we propose an alternative measure, where the user is allowed to
specify in the meta-model which edit operations that are allowed for each class.
We require them to be specified using pre- and post-conditions defined in (a
subset of) OCL, to be automatically converted to Alloy using the translation
procedure defined in [6]. Essentially, each operation will originate an Alloy pred-
icate that checks if it holds between given pre- and post-models. For example,
Figure 1 defines the interface of possible edit operations for our running example.

Given the specifications of operations, we constrain models to form an order-
ing, where each step corresponds to the application of an edit operation.

open util/ordering[UML]

pred setName [p:Package, n:String, m,m’:UML] { . . . }
pred addClass [p:Package, n:String, m,m’:UML] { . . . }
. . .
fact { all m:UML, m’:m.next | {

some p:package.m, n:String | setName[p,n,m,m’] or

some p:package.m, n:String | addClass[p,n,m,m’] or . . . } }

In this case, ∆UML will be the number of models (intermediate steps) required to
achieve a consistent target, which, as we will see next, will be determined by the
scope of the signature denoting the respective meta-model.

3.3 Executing the semantics

Executing the transformation in checkonly mode is fairly simple: we just need
to check the consistency predicate for a pair of concrete models. To represent
a concrete model, we use singleton signatures to denote specific objects and
facts to fix the interpretation of relations. For example, a UML model M with two
classes A and B with no attributes in a single package P, where A is persistent
and extends the non-persistent B, can be specified as follows:

one sig M extends UML {}

one sig P extends Package {}

one sig A,B extends Class {}

fact { class.M = A + B && package.M = P && namespace.M = A->P + B->P &&

general.M = A->B && no attribute.M && persistent.M = A && . . . }

To check if UML model M is consistent with RDBMS model N the command
check { Uml2Rdbms[M,N] } is issued, with the scope of each signature be-
ing set to the number of elements of the respective class in each of the two
models. Regarding enforce mode with GED minimization, in order to deter-
mine a new UML model M’ consistent with RDBMS model N, with original model
M, the command run { Uml2Rdbms[M’,N] && Delta_UML[M,M’]=∆ } is issued
with increasing values ∆ (starting at 0). In this case, the scope of each sig-
nature is set to the number of elements of the respective class plus ∆, to al-
low complete freedom in the choice of edit operations. The calculation and
increment of both ∆ and the scope is performed automatically by our tool.



To execute the enforce mode with user-specified edit operations the command
run { Uml2Rdbms[M’,N] && M=first && M’=last } is issued with increasing
scopes ∆ (plus one) for signature UML. The original and target models are con-
strained to be the first and last in the model ordering, respectively. Determining
the scope for the remaining signatures is not straightforward in this case, since
edits can be arbitrary operations. For the moment we are using a rough ap-
proximation, that assumes creation of new objects to be specified via existential
quantification: for every increment of ∆, the scope of a signature is increased by
the maximum number of such quantifications over all edit operations.

The user is required to specify an upper-bound for ∆ that limits the search
for consistent targets. If several consistent models are found at the minimum
distance our tool warns the user and allows him to see the different alternatives.
If the user then desires to reduce such non-determinism, he can, for example,
add extra OCL constraints to the meta-model or narrow the set of allowed edit
operations to target a specific class of models.

4 Related Work

Regarding tools support for QVT-R transformations, Medini and ModelMorf are
the main existing functional tools. Medini [10] is an Eclipse plugin for a subset
of the QVT-R language. Although popular, its (unknown) semantics admittedly
disregards the semantics from the QVT standard (it does not have a checkonly
mode for instance). ModelMorf [20] allegedly follows the QVT standard closely
(although once again the concrete semantics are unknown), since its development
team was involved in the specification of the standard. However, the development
of the tool seems to have stopped. None of these tools has support for OCL con-
straints on the meta-models. Other prototype tools have been proposed but once
again the implemented semantics are not completely clear. Moment-QVT [2] is
an Eclipse plug-in for the execution of QVT-R transformations by resorting to
the Maude rewriting system; [12] proposes the embedding of QVT-R in Colored
Petri Nets; [8] discusses the possible implementation of QVT-R transformations
in TGGs. All these tools support only unidirectional transformations, in the
sense that they ignore the original target model. As such, they are not able to
retrieve information not present in the source, leading to the generation of com-
pletely new models every time the transformation is applied. Once again, none
supports OCL constraints on the meta-model.

A technique that follows an approach similar to ours is the JTL tool [5],
although it does not support QVT-R, but rather a restricted QVT-like language.
Like ours, JTL generates models by resorting to a solver (the DLV solver), which
is able to retrieve some information from the original target. However, it is
not clear how the solver chooses which information to retrieve or how the new
model is generated. It also forces the totality of the transformation, returning
inconsistent models in case there is no consistent one.

Regarding the validation of QVT-R transformations two approaches have
been proposed that also rely on solvers. In [7] the authors use Alloy to verify the



correctness of QVT-R specifications, in order to guarantee the well-formedness of
the output and avoid run-time errors. In [4] OCL invariants of the shape “forall-
there-exist” are inferred from QVT-R transformations (much like the checking
semantics), that allow the validation of QVT-R specifications under a set of
properties. It supports OCL constraints in the meta-model and recursive calls
are translated to recursive OCL specifications. However, both these approaches
are not focused on enforce mode and its semantics, and do not analyze the
behavior of the transformation for concrete input models. Using our embedding
we can do so, and also support the validation of similar properties, like checking
if a transformation is injective or that all consistent models are well-formed.

5 Conclusions and Future Work

This paper proposed a QVT-R bidirectional model transformation tool, support-
ing both the standard checking semantics and a clear and precise enforcement
semantics based on the principle of least change. It also supports meta-models
annotated with OCL constraints and specification of allowed edit operations,
which allows its applicability to non-trivial domains and provides a fine-grained
control over non-determinism. The implementation is based on an embedding in
Alloy, taking advantage of its model finding abilities. Although we only described
the support for bidirectional transformations, our embedding can trivially be
generalized to the multi-directional scenario, where updates on multiple models
are propagated to a designated target, another feature not currently offered by
any existing QVT-R tool.

Being solver-based, the main drawback of the proposed tool is performance.
Improving it is the main goal of our future work: we intend to explore incremen-
tal solving techniques to speed-up the execution of successive commands with
increasing scope, and to define mechanisms to infer which parts of target model
can be fixed a priori in order to speed-up solving. However, even in its present
status the tool is already fully functional and can be used to perform trans-
formations of medium-sized models. In particular, it already proved effective in
debugging existing transformations, namely helping us unveiling several errors in
the well-known object-relational mapping that illustrates QVT-R specification.
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