15 research outputs found

    Rag defects and thymic stroma: lessons from animal models

    Get PDF
    Thymocytes and thymic epithelial cells (TECs) cross-talk is essential to support T cell development and preserve thymic architecture and maturation of TECs and Foxp3+ natural regulatory T cells. Accordingly, disruption of thymic lymphostromal cross-talk may have major implications on the thymic mechanisms that govern T cell tolerance. Several genetic defects have been described in humans that affect early stages of T cell development [leading to severe combined immune deficiency (SCID)] or late stages in thymocyte maturation (resulting in combined immunodeficiency). Hypomorphic mutations in SCID-causing genes may allow for generation of a limited pool of T lymphocytes with a restricted repertoire. These conditions are often associated with infiltration of peripheral tissues by activated T cells and immune dysregulation, as best exemplified by Omenn syndrome (OS). In this review, we will discuss our recent findings on abnormalities of thymic microenvironment in OS with a special focus of defective maturation of TECs, altered distribution of thymic dendritic cells and impairment of deletional and non-deletional mechanisms of central tolerance. Here, taking advantage of mouse models of OS and atypical SCID, we will discuss how modifications in stromal compartment impact and shape lymphocyte differentiation, and vice versa how inefficient T cell signaling results in defective stromal maturation. These findings are instrumental to understand the extent to which novel therapeutic strategies should act on thymic stroma to achieve full immune reconstitution

    The role of WNT and IL-1 signaling in osteoarthritis: therapeutic implications for platelet-rich plasma therapy

    Get PDF
    Different from inflammatory arthritis, where biologicals and targeted synthetic molecules have revolutionized the disease course, no drug has demonstrated a disease modifying activity in osteoarthritis, which remains one of the most common causes of disability and chronic pain worldwide. The pharmacological therapy of osteoarthritis is mainly directed towards symptom and pain relief, and joint replacement is still the only curative strategy. Elucidating the disease pathophysiology is essential to understand which mechanisms can be targeted by innovative therapies. It has extensively been demonstrated that aberrant WNT and IL-1 signaling pathways are responsible for cartilage degeneration, impaired chondrocyte metabolism and differentiation, increased extracellular matrix degradation, and altered subchondral bone homeostasis. Platelet-rich plasma is an autologous blood derivative containing a concentration of platelets that is much higher than the whole blood counterpart and has shown promising results in the treatment of early knee osteoarthritis. Among the proposed mechanisms, the modulation of WNT and IL-1 pathways is of paramount importance and is herein reviewed in light of the proposed regenerative approaches

    RANK-Dependent Autosomal Recessive Osteopetrosis: Characterization of Five New Cases With Novel Mutations

    Get PDF
    Autosomal recessive osteopetrosis (ARO) is a genetically heterogeneous disorder attributed to reduced bone resorption by osteoclasts. Most human AROs are classified as osteoclast rich, but recently two subsets of osteoclast-poor ARO have been recognized as caused by defects in either TNFSF11 or TNFRSF11A genes, coding the RANKL and RANK proteins, respectively. The RANKL/RANK axis drives osteoclast differentiation and also plays a role in the immune system. In fact, we have recently reported that mutations in the TNFRSF11A gene lead to osteoclast-poor osteopetrosis associated with hypogammaglobulinemia. Here we present the characterization of five additional unpublished patients from four unrelated families in which we found five novel mutations in the TNFRSF11A gene, including two missense and two nonsense mutations and a single-nucleotide insertion. Immunological investigation in three of them showed that the previously described defect in the B cell compartment was present only in some patients and that its severity seemed to increase with age and the progression of the disease. HSCT performed in all five patients almost completely cured the disease even when carried out in late infancy. Hypercalcemia was the most important posttransplant complication. Overall, our results further underline the heterogeneity of human ARO also deriving from the interplay between bone and the immune system, and highlight the prognostic and therapeutic implications of the molecular diagnosis. © 2012 American Society for Bone and Mineral Researc

    Homeostatic expansion of autoreactive immunoglobulin-secreting cells in the Rag2 mouse model of Omenn syndrome

    Get PDF
    Hypomorphic RAG mutations, leading to limited V(D)J rearrangements, cause Omenn syndrome (OS), a peculiar severe combined immunodeficiency associated with autoimmune-like manifestations. Whether B cells play a role in OS pathogenesis is so far unexplored. Here we report the detection of plasma cells in lymphoid organs of OS patients, in which circulating B cells are undetectable. Hypomorphic Rag2R229Q knock-in mice, which recapitulate OS, revealed, beyond severe B cell developmental arrest, a normal or even enlarged compartment of immunoglobulin-secreting cells (ISC). The size of this ISC compartment correlated with increased expression of Blimp1 and Xbp1, and these ISC were sustained by elevated levels of T cell derived homeostatic and effector cytokines. The detection of high affinity pathogenic autoantibodies toward target organs indicated defaults in B cell selection and tolerance induction. We hypothesize that impaired B cell receptor (BCR) editing and a serum B cell activating factor (BAFF) abundance might contribute toward the development of a pathogenic B cell repertoire in hypomorphic Rag2R229Q knock-in mice. BAFF-R blockade reduced serum levels of nucleic acid-specific autoantibodies and significantly ameliorated inflammatory tissue damage. These findings highlight a role for B cells in OS pathogenesis

    Homeostatic expansion of autoreactive immunoglobulin-secreting cells in the Rag2 mouse model of Omenn syndrome

    Get PDF
    Hypomorphic RAG mutations, leading to limited V(D)J rearrangements, cause Omenn syndrome (OS), a peculiar severe combined immunodeficiency associated with autoimmune-like manifestations. Whether B cells play a role in OS pathogenesis is so far unexplored. Here we report the detection of plasma cells in lymphoid organs of OS patients, in which circulating B cells are undetectable. Hypomorphic Rag2R229Q knock-in mice, which recapitulate OS, revealed, beyond severe B cell developmental arrest, a normal or even enlarged compartment of immunoglobulin-secreting cells (ISC). The size of this ISC compartment correlated with increased expression of Blimp1 and Xbp1, and these ISC were sustained by elevated levels of T cell derived homeostatic and effector cytokines. The detection of high affinity pathogenic autoantibodies toward target organs indicated defaults in B cell selection and tolerance induction. We hypothesize that impaired B cell receptor (BCR) editing and a serum B cell activating factor (BAFF) abundance might contribute toward the development of a pathogenic B cell repertoire in hypomorphic Rag2R229Q knock-in mice. BAFF-R blockade reduced serum levels of nucleic acid-specific autoantibodies and significantly ameliorated inflammatory tissue damage. These findings highlight a role for B cells in OS pathogenesis

    Cellular Senescence in Immunity against Infections

    No full text
    Cellular senescence is characterized by irreversible cell cycle arrest in response to different triggers and an inflammatory secretome. Although originally described in fibroblasts and cell types of solid organs, cellular senescence affects most tissues with advancing age, including the lymphoid tissue, causing chronic inflammation and dysregulation of both innate and adaptive immune functions. Besides its normal occurrence, persistent microbial challenge or pathogenic microorganisms might also accelerate the activation of cellular aging, inducing the premature senescence of immune cells. Therapeutic strategies counteracting the detrimental effects of cellular senescence are being developed. Their application to target immune cells might have the potential to improve immune dysfunctions during aging and reduce the age-dependent susceptibility to infections. In this review, we discuss how immune senescence influences the host’s ability to resolve more common infections in the elderly and detail the different markers proposed to identify such senescent cells; the mechanisms by which infectious agents increase the extent of immune senescence are also reviewed. Finally, available senescence therapeutics are discussed in the context of their effects on immunity and against infections

    AIRE deficiency in thymus of 2 patients with Omenn syndrome

    No full text
    Omenn syndrome is a severe primary immunodeficiency with putative autoimmune manifestations of the skin and gastrointestinal tract. The disease is caused by hypomorphic mutations in recombination-activating genes that impair but do not abolish the process of VDJ recombination, leading to the generation of autoreactive T cells with a highly restricted receptor repertoire. Loss of central tolerance in genetically determined autoimmune diseases, e.g., autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, is associated with defective expression by medullary thymic epithelial cells of AIRE, the transcription activator that induces thymic expression of tissue-specific antigens. Analysis of AIRE expression in the thymi of 2 Omenn syndrome patients and 1 SCID patient, by real-time RT-PCR and immunohistochemistry, demonstrated a profound reduction in the levels of AIRE mRNA and protein in patients as compared with a normal control subject. Lack of AIRE was associated with normal or even increased levels of keratin and lymphotoxin-β receptor mRNAs, while mRNAs of the self-antigens insulin, cytochrome P450 1a2, and fatty acid–binding protein were undetectable in thymi from immunodeficiency patients. These results demonstrate that deficiency of AIRE expression is observed in severe immunodeficiencies characterized by abnormal T cell development and suggest that in Omenn syndrome, the few residual T cell clones that develop may escape negative selection and thereafter expand in the periphery, causing massive autoimmune reactions
    corecore