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Different from inflammatory arthritis, where biologicals and targeted synthetic
molecules have revolutionized the disease course, no drug has demonstrated a
disease modifying activity in osteoarthritis, which remains one of the most
common causes of disability and chronic pain worldwide. The pharmacological
therapy of osteoarthritis is mainly directed towards symptom and pain relief, and
joint replacement is still the only curative strategy. Elucidating the disease
pathophysiology is essential to understand which mechanisms can be targeted
by innovative therapies. It has extensively been demonstrated that aberrant WNT
and IL-1 signaling pathways are responsible for cartilage degeneration, impaired
chondrocyte metabolism and differentiation, increased extracellular matrix
degradation, and altered subchondral bone homeostasis. Platelet-rich plasma
is an autologous blood derivative containing a concentration of platelets that is
much higher than the whole blood counterpart and has shown promising results
in the treatment of early knee osteoarthritis. Among the proposed mechanisms,
the modulation of WNT and IL-1 pathways is of paramount importance and is
herein reviewed in light of the proposed regenerative approaches.
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Introduction

Osteoarthritis (OA) is the most common disease affecting the joints, the prevalence
exceeding 10% of the global population and constantly increasing (Glyn-Jones et al., 2015).
Albeit almost any joint can be involved, the knee is one of the most frequently affected and
symptomatic sites, with typical radiographic alterations being detectable in up to 37% of
people over 60 years and associated symptoms in 12% of the global population (Dillon et al.,
2006). Pain and disability deriving from OA represent major concerns, leading to a
considerable economic burden, mainly in terms of indirect costs such as loss of
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productivity and informal care provided by caregivers (Leardini
et al., 2004). Traditional risk factors for OA development include
female gender, older age, elevated body mass index (i.e., overweight
and obesity), mechanical factors (e.g., congenital hip dysplasia), and
previous articular damage (e.g., sport injuries) (Sharma, 2021).
However, due to the heterogeneity of OA localizations,
differences in risk factors, pathogenic theories, clinical
manifestations, and therapeutic strategies are being recognized in
a site-specific manner (Kloppenburg et al., 2017). As an example,
family history is a prominent risk factor for hand and hip OA
(Haugen et al., 2020), whereas it is of limited importance in case of
knee OA.

The diagnosis of OA relies on the clinical features, mainly
mechanical joint pain and typical signs at physical examination
(such as Heberden’s and Bouchard’s nodules in hand OA,
trapeziometacarpal joint deformities, etc.) and is largely
supported by imaging findings, particularly conventional
radiography of the involved joints which remains the standard
instrumental evaluation (Haugen and Bøyesen, 2011). Joint space
narrowing, subchondral sclerosis, and osteophyte formation are
suggestive elements when evaluating radiographs obtained in
patients with OA (Swagerty and Hellinger, 2001). First-line
treatments mostly rely on pharmacological systemic and intra-
articular therapies, with pain relief as the most important
objective; thus, these treatments only lead to short-term benefits
whereas joint replacement surgery is the only resolutive strategy
(Sharma, 2021). However, joint replacement is not free from
complications since prosthetic joints have a limited life span and
seldom require surgical revision (Sabah et al., 2021). Also, the risk of
peri-prosthetic infection (Sharma, 2021) is associated to morbidity
and mortality along with challenges and difficulties in diagnosis and
management (Peel et al., 2012; Tande and Patel, 2014).

Taking these considerations into account, the treatment of OA is
far from achieving the results that have been observed in other
rheumatological subsets such as inflammatory arthritis
(i.e., rheumatoid arthritis, spondyloarthritis) (Smolen et al., 2022;
Ramiro et al., 2023); elucidating the disease pathogenesis is of
utmost importance in order to discover effective (and hopefully
permanent) “disease-modifying” treatment strategies. Disease
modifying antirheumatic drugs (DMARDs) are a heterogeneous
class of pharmaceuticals that intercept different but fundamental
aspects in the pathogenesis of a disease, thus interfering and
blocking the disease mechanisms. Similarly, a definition for
“disease modifying OA drugs” (DMOADs) has been recently
proposed (Oo and Hunter, 2022).

OA has been traditionally considered a mechanical and
degenerative disorder, rather than an immune-mediated or
inflammatory phenomenon (Vincent, 2019a); as a proof of
concept, OA is usually counterposed to inflammatory arthritis
(i.e., rheumatoid arthritis, spondyloarthritis, and microcrystalline
arthritis) in both research models and clinical practice (Tu et al.,
2023). A role for inflammatory cytokines, such as IL-1β and TNF-α,
however, has been hypothesized in OA since the 1980s (Pujol and
Loyau, 1987), so that in the English language the historical term
“osteoarthrosis” (with the Latin suffix -osis standing for
“degenerative process” without inflammation) (Atkinson, 1984)
has been replaced by “osteoarthritis” to highlight the
inflammatory component (Vincent, 2019a) that is part of the

disease pathogenesis. Moreover, genetic polymorphisms and
epigenetic modifications involving genes coding for inflammatory
factors have been advocated and might help explain the family
distribution that is typical of certain subsets of OA, such as the hand
and the hip (Motta et al., 2022).

Platelet-rich plasma (PRP) is an autologous blood derivative
containing a concentration of platelets that is much higher than
the whole blood counterpart. PRP is enriched in molecules that
are normally contained in platelet granules, including different
cytokines and growth factors such as platelet-derived growth
factor (PDGF), vascular endothelial growth factor (VEGF),
insulin-like growth factor I (IGF-I), and transforming growth
factor β (TGF-β), along with anti-inflammatory molecules
(Rodríguez-Merchán, 2022). Such molecules play a relevant
role in maintaining and restoring chondrocyte, synovial, and
subchondral bone homeostasis (Bennell et al., 2017). Despite
the unsatisfactory results achieved in two large randomized-
controlled trials investigating knee and ankle OA (Bennell
et al., 2017; Paget et al., 2021), a recent meta-analysis has
suggested the superiority of PRP intra-articular injections
compared to standard-of-care hyaluronic acid in terms of
short-term functional recovery, joint functional improvement,
and long-term pain relief (Tang et al., 2020; Belk et al., 2021).
Also, PRP injection in a mouse model of early knee OA has been
associated with a decreased incidence of radiological and
symptomatic OA (Khatab et al., 2018). PRP administration has
shown to improve the quality of life in patients with severe knee
OA in a large clinical trial (Akan et al., 2018), whereas no
significant benefit was reported in patients with mild and
moderate radiographic damage (Bennell et al., 2021), thus
suggesting that a correct timing of administration is crucial.
Dosing of PRP is also of utmost importance, and a platelet
count exceeding 10 billion is necessary to achieve sustained
clinical benefits, along with a reduction in the amount of
inflammatory cytokines in the synovial fluid (Bansal et al., 2021).

Even though the exact mechanisms of action are largely
unknown, anti-inflammatory and immune-modulating functions
of PRP have been postulated (Bennell et al., 2017), along with disease
modifying effects at both cartilage and synovial level (Boffa et al.,
2021). Despite a large number of molecular mechanisms involved in
OA have been elucidated (Moussa et al., 2017; Li et al., 2022; Yao
et al., 2023), WNT signaling pathway and IL-1β-mediated signaling
have gained importance in the disease pathogenesis during the last
years. We will herein review the pathogenic significance of these
mechanisms, with a focus on the possible roles of PRP inmodulating
such processes. The main characteristics of WNT and IL-1 pathway
in the pathogenesis of knee OA, as well as the potential role of PRP
in modulating their action, are summarized in Table 1 and
schematically depicted in Figure 1.

WNT signaling in OA

WNT is a conserved family of growth factors involved in the
regulation of tissue development and differentiation (Clevers and
Nusse, 2012). In particular, the morphogenic ability to shape tissues
is one of the most important features distinguishing WNT from
other families of growth factors (Clevers and Nusse, 2012). WNT
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signaling is involved in bone and joint formation since
embryogenesis, contributing to the homeostasis of connective
tissues during adult life (Hartmann and Tabin, 2001; Guo et al.,
2004), including cartilage. Genetic defects in the WNT signal
transduction pathway are indeed responsible for complex
syndromes characterized by bone abnormalities and frailty, with

defects in teeth and retinal development (Nusse and Clevers, 2017).
More recently, polymorphisms in WNT genes have been linked to
the predisposition towards OA development (Zhou et al., 2017),
after observing that this pathway is overexpressed in the cartilage
and synovium in both animal models and humans (De Santis et al.,
2018).

TABLE 1 Executive summary of the characteristics of WNT and IL-1 signaling.

WNT IL-1β

Biologic function Morphogenic growth factors Inflammatory cytokine

Genetic defect consequences Connective tissue abnormalities (skeleton, cartilage, teeth) Autoinflammatory syndromes (inflammasomopathies)

Key transduction proteins Canonical pathway MAP kinase

β-catenin NF-κB

Noncanonical pathway Protein kinase C

WNT-5a Notch

Cellular effects Chondrocyte dedifferentiation Cartilage degradation

ECM degradation Cartilage fibrosis (⇧ type I collagen)

Bone metabolism imbalance Bone sclerosis

Effects of PRP ⇩ β-catenin NF-κB

⇩ TNF-α ⇩ inflammasome

WNT-5a ⇧ IL-1Ra

Legenda: ⇧ stands for “increase”; ⇩ stands for “reduction”; stands for “inhibition”.

FIGURE 1
Schematic representation of the role ofWnt and IL-1 in the pathogenesis of osteoarthritis (A) and of the effects elicited on thesemechanisms by PRP
infusion (B). The figure was created with BioRender.com (accessed on 24 March 2023).
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Two major pathways of signal transduction have been
described for proteins of the WNT family: the canonical (or
β-catenin dependent) pathway, and the non-canonical pathway
which is largely sustained by the WNT-5a isoform (Wang et al.,
2019a). It has been described in animal models that aberrant
canonical WNT signaling plays a critical role in OA
pathogenesis: increased levels of β-catenin have been
observed in the cartilage of mechanical stress-induced OA in
rats (Liu et al., 2016), as well as in chondrocytes from mice
stimulated with IL-1β (Bougault et al., 2014). It seems indeed
that hyper-activation of canonical WNT signaling leads to
chondrocyte overexpression of metalloproteinases (MMPs)
and other extracellular matrix degrading enzymes (such as
ADAMTS 4 and 5), with subsequent destruction of the
cartilage (Blom et al., 2009). As for the non-canonical
pathway, WNT-5a overexpression seems to promote changes
leading to OA, such as cartilage degradation, synovial activation,
and osteoclast/osteoblast activity imbalance in subchondral
bone (Wang et al., 2019a). From a cellular point of view,
hyper-activation of WNT in chondrocytes leads to their de-
differentiation to mesenchymal cells with extracellular matrix
degrading abilities (Yates et al., 2005). WNT silencing is
essential instead during the development of osteo-
chondroprogenitors to polarize their differentiation into
matrix-producing chondrocytes (Yates et al., 2005), and WNT
inhibition is capable to stimulate both chondrocyte proliferation
and the synthesis of cartilage-specific collagen isoforms
(i.e., type II collagen) (Kovács et al., 2019). Moreover, WNT
antagonism modulates the activity of subchondral osteoblasts,
thus reducing the formation of osteophytes: in this sense, despite
not reaching satisfying results in preliminary studies (Yazici
et al., 2020), lorecivivint (an inhibitor of the canonical WNT
signaling pathway) is currently under investigation for the
treatment of OA (Deshmukh et al., 2019; De Palma and
Nalesso, 2021). Modulation of WNT signaling is thus a
promising therapeutic target in patients suffering from OA,
since both the β-catenin dependent and the non-canonical
pathways drive the fundamental pathogenic mechanisms.

The pathogenic picture is however more complex, since it has
been demonstrated that a balanced and appropriate degree of
WNT signaling is required for cartilage homeostasis: both the
complete inhibition and the hyper-expression of the canonical
pathway have been associated to deleterious effects on chondral
metabolism, with an increase in the risk of OA development in
both animal and human models (Loughlin et al., 2004; Lories
et al., 2007; Zhu et al., 2008; Zhu et al., 2009). Factors
contributing to the regulation of such delicate equilibrium are
largely unknown, but it has been postulated that the different
WNT isoforms may exert distinct and even contrasting activities:
as an example, despite WNT hyper-expression representing a
well-established pathogenic factor in OA development,
upregulation of WNT-16 is essential in preserving cartilage
homeostasis following joint injury (Nalesso et al., 2017). More
detailed information is required to elucidate the role of WNT in
contributing to cartilage preservation versus degeneration, so
that targeted inhibition of deleterious molecules and
stimulation of protective isoforms could represent valid
therapeutic strategies in the future.

IL-1 signaling in OA

Patients with OA-related pain have increased serum levels of
C-reactive protein compared to healthy controls, thus supporting
the hypothesis that some degree of subclinical inflammation is a key
contributor in the development and clinical manifestations of OA
(Lane and Felson, 2020). IL-1 is a family of inflammatory cytokines,
with soluble IL-1β being one of the most characterized elements
(Migliorini et al., 2020), produced from the cleavage of inactive
precursors through the action of inflammasomes, that are enzymatic
complexes found in activated immune cells during the inflammatory
response (Migliorini et al., 2020). Genetic defects leading to the
constitutive activation of the inflammasome are responsible for a
subset of autoinflammatory syndromes associated to excessive and
dysregulated production of IL-1β, such as familial Mediterranean
fever and mevalonate kinase deficiency syndrome (Lin and
Goldbach-Mansky, 2022). The IL-1 system has been also
advocated as a central actor in the pathogenesis of OA, and a
close relationship between genetic polymorphisms of IL-1 and
OA development has been described (Cai et al., 2015). IL-1β is
among the most potent inducers of cartilage degradation (Vincent,
2019b), is capable of reducing the synthesis of type II collagen and
proteoglycans, and can stimulate the release of matrix-degrading
enzymes (MMPs, ADAMTS 4 and 5) (Kapoor et al., 2011) from
chondrocytes. The CANTOS study was a randomized control trial
investigating the role of canakinumab (a monoclonal antibody
directed towards IL-1β) in secondary cardiovascular prevention;
among secondary outcomes, it was observed that patients receiving
canakinumab were less prone to undergo joint replacement surgery
for knee OA compared to controls (Lane and Felson, 2020). Despite
information on these outcomes was often nonspecifically reported
or inconsistently collected, such results were confirmed even in the
long-term (Lane and Felson, 2020). Despite the fact that the trial was
not empowered to study the role of IL-1 inhibitors in OA, and was
interrupted because of the increased infection risk, such data
support the hypothesis of a critical role of cytokines, especially
IL-1β, and inflammation in the pathogenesis of OA.

IL-1β exerts pleiotropic actions on multiple cells that are
responsible for cartilage homeostasis, including chondrocytes,
osteoblasts, osteoclasts, synovial macrophages, and fibroblasts
(Jenei-Lanzl et al., 2019). Levels of membrane IL-1 receptor 1
(IL-1RI) as well as cytoplasmic proteins involved in IL-1β
signaling transduction are upregulated in osteoarthritic
chondrocytes (Martel-Pelletier et al., 1992; Ahmad et al., 2007).
The action of IL-1β skews chondrocyte metabolism towards
catabolism, thus inducing apoptosis and extracellular matrix
degradation. Moreover, chondrocytes exposed to IL-1β acquire a
fibroblast-like de-differentiated phenotype that results in the
increase of type I collagen synthesis (i.e., the “fibrotic” collagen)
at the expense of type II collagen, and upregulation of matrix
proteinases (i.e., MMPs and ADAMTS) (Liacini et al., 2002), thus
impairing the mechanical properties of the cartilage. The
aforementioned deleterious changes are obtained through the
interplay between IL-1β and different signaling pathways,
including MAP kinase, NF-kB, protein kinase C, Notch, and even
WNT (Jenei-Lanzl et al., 2019).

The IL-1 system can also alter bone cell metabolism, despite
conflicting evidence has been reported. Following bone fractures,
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osteoblasts normally produce IL-1β and this cytokine is essential to
boost the process of bone repair (Lin et al., 2010). Subchondral OA
osteoblasts display the same ability to synthetize large amounts of
IL-1β (Massicotte et al., 2002), which has been hypothesized to guide
osteoproliferation, leading to osteophyte formation and subchondral
bone sclerosis (Jenei-Lanzl et al., 2019). Notwithstanding, low-dose
chronic exposure to IL-1β has shown to inhibit the synthetic
functions of osteoblasts in vitro, and to induce a catabolic
phenotype, for example, enhancing their expression of RANKL
(Jenei-Lanzl et al., 2019). Furthermore, IL-1β modulates
osteoclast metabolism, by inhibiting their apoptosis, and
stimulating osteoclastogenesis (Jimi et al., 1998).

MicroRNAs (miRNA) play an important role in modulating IL-
1β-induced OA damage (Sondag and Haqqi, 2016). High levels of
miR-140 have been described in healthy chondrocytes, and are in
turn significantly lower after chondrocytes are exposed in vitro to IL-
1β, as well as in case of chondrocytes derived from osteoarthritic
joints (Miyaki et al., 2009). A peculiar miRNA signature has been
recently described in chondrocytes from patients with knee OA, and
includes different molecules, such as miR-9, miR-27, miR-34a, miR-
140, miR-146a, miR-558, and miR-602. Thus, non-coding RNAs are
thought to be involved in the regulation of IL-1β-induced cartilage
matrix degradation (O’Neill et al., 2011), and their signaling could
represent an interesting therapeutic target for future research.

PRP effects on IL-1 and WNT signaling

PRP has demonstrated clinical efficacy as a therapeutic strategy
in a subgroup of patients affected by OA, by reducing the burden of
symptoms and increasing the time-to-joint replacement especially in
knee disease (Filardo et al., 2021). By containing a large amount of
platelet-derived growth factors and cytokines, PRP is supposed to
act by modifying the intra-articular cellular and molecular milieu
(Figure 1B) but the pathogenetic mechanisms remain only partially
understood, likely resulting in immune cell recruitment and
induction of a regenerative response in both chondrocytes and
synovial fibroblasts (Szwedowski et al., 2021). In particular, since
PRP is composed of both pro-inflammatory and anti-inflammatory
cytokines, it is thought that the interplay between these opposite
forces can shift the balance of the osteoarthritic joint metabolism
towards a favorable setting (Riewruja et al., 2022). However, detailed
cytokine and growth factor profiling of PRP composition is needed
to overcome the heterogeneity (Filardo et al., 2021) of previous
evidence. It has been demonstrated that OA pathogenesis is
characterized by a disproportion between classically activated
pro-inflammatory macrophages (M1) and alternatively activated
pro-healing macrophages (M2), in favor of the former
population. PRP can restore the M1/M2 balance by re-polarizing
M1 macrophages towards an M2 phenotype, by recruiting quiescent
macrophages and blood monocytes in the OA joint and by inducing
their polarization into an M2 type (Uchiyama et al., 2021).

PRP also reduces serum and joint fluid levels of pro-
inflammatory cytokines such as IL-1β, IL-6, and VEGF (Sun
et al., 2022), and can inhibit apoptosis in chondrocytes exposed
to IL-1β, as well as extracellular matrix degradation (Yang et al.,
2016). The effects of PRP on IL-1 system modulation are partially
mediated by PDGF released from platelet granules (Montaseri et al.,

2011), and a direct inhibitory effect of PRP on IL-1 transduction
pathway has been postulated, with particular attention on the role of
transcription factor NF-kB (Qi et al., 2021). Of note, similar
molecular and immune results were observed with PRP in the
conservative treatment of intervertebral disc degeneration where,
along with the skewing of chondral macrophages towards an
M2 phenotype, PRP showed to promote the degradation of
NLRP3 inflammasome, with a subsequent reduction in levels of
caspase-1 and IL-1β (Qian et al., 2022). PRP is also able to mitigate
IL-1β inflammatory action by inducing an increase in intrarticular
levels of IL-1 receptor antagonist (IL-1Ra), that is its natural decoy
receptor and inhibitor (Barreto and Braun, 2016; Ziegler et al., 2019).
In preclinical studies, IL-1Ra has indeed demonstrated to attenuate
IL-1β-induced extracellular matrix degradation, also by restoring
adequate autophagy processes (Wang et al., 2019b); meanwhile,
plasma IL-1Ra levels have been negatively correlated with the risk of
damage progression in a cohort of patients with early knee OA (Ma
et al., 2020). It remains to be established whether baseline serum and
synovial fluid levels of IL-1β, IL-1Ra, IL-6, and other inflammatory
cytokines and biomarkers (including, e.g., C-reactive protein) could
predict the therapeutic response to PRP injections.

The modulation of WNT/β-catenin signaling pathway is
another proposed mechanism through which PRP is thought to
exert its functions, thus suppressing apoptosis and inhibiting
chondrocyte de-differentiation (Wu et al., 2018). In particular,
PRP-derived exosomes are capable to inhibit the expression of
WNT-5a, thus preventing chondrocyte death, and in turn
inducing activation, proliferation and migration of cartilage cells
(Liu et al., 2019). Increased levels of β-catenin, WNT-5a, and TNF-α
have been described in IL-1β-treated chondrocytes; these
phenomena are reversed after exposure to PRP-derived exosomes
(Liu et al., 2019).

It was recently observed in vitro that PRP increases the
expression of selected miRNAs, including miR-140, in
mesenchymal stem cells (Konar et al., 2023). Also, miRNAs
contained in PRP preparations can suppress inflammation and
promote chondrocyte progenitors differentiation; it was indeed
demonstrated that miR-337 and miR-375 contribute to OA
alleviation through the aforementioned mechanisms (Sun et al.,
2022). Notably, the same miRNAs were found to exert regulatory
functions towards WNT signaling system in both cancer (Cui et al.,
2018) and rheumatoid arthritis (Gui et al., 2015), thus inhibiting
malignancy progression in the former case, and modulating the
deleterious effects of activated synovial fibroblasts in the latter. We
could thus postulate that PRP can contribute to restore joint
homeostasis through a miRNA-dependent epigenetic regulation,
which could constitute a novel therapeutic target for early forms
of OA.

Frommolecular immunology to clinical
practice: limitations and unmet needs
of PRP

Despite promising results, available clinical evidence is affected
by much heterogeneity (Kon et al., 2020). First, high-quality RCT
should report the preparation techniques and cellular composition
of PRP (Kon et al., 2020). Second, due to the high variability in
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cytokine concentrations, data are poorly generalizable in clinical
contexts (Ha et al., 2019; Kon et al., 2020). Third, a detailed profiling
of selected patients is warranted, based on relevant comorbidities,
age and sex, OA history (e.g., primary vs. post-traumatic, post-
inflammatory, etc.) (Kon et al., 2020). Fourth, the correct timing of
administration OF PRP needs yet to be established (Kon et al., 2020).

A precision medicine model is thus warranted, and molecular
immunology represents the ideal tool to elucidate the role of PRP
(and its detailed composition) in restoring the metabolic balance of
OA joints, as well as to translate the acknowledged preclinical
evidence into clinically significant results.

Conclusion

Different from the progresses in the management of
inflammatory arthritis, OA is considered an orphan disease,
representing the main contributor to limitations in daily
activities. By impairing walking in up to 20% of the affected
subjects, OA has also been associated with an excess of overall
mortality (Palazzo et al., 2016). Innovative treatments are required,
but it is of outmost importance that the mechanisms underlying the
disease pathogenesis are elucidated. The effects of PRP on the
osteoarthritic joints sustain the hypothesis that the interplay
between inflammatory and metabolic alterations drives the
progression of OA and serves as prerequisite to further
investigate biological and targeted therapies, however requiring
more robust preclinical and clinical assumptions.
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