1,886 research outputs found
Coexistence of thermal noise and squeezing in the intensity fluctuations of small laser diodes
The intensity fluctuations of laser light are derived from photon number rate
equations. In the limit of short times, the photon statistics for small laser
devices such as typical semiconductor laser diodes show thermal characteristics
even above threshold. In the limit of long time averages represented by the low
frequency component of the noise, the same devices exhibit squeezing. It is
shown that squeezing and thermal noise can coexist in the multi-mode output
field of laser diodes. This result implies that the squeezed light generated by
regularly pumped semiconductor laser diodes is qualitatively different from
single mode squeezed light. In particular, no entanglement between photons can
be generated using this type of collective multi-mode squeezing.Comment: 9 pages, 8 figures, submitted to J. Opt. Soc. Am. B, added references
and clarifications of the contex
Ammonia Toxicity and Associated Protein Oxidation: A Single-Cell Surface Enhanced Raman Spectroscopy Study
Ammonia (NH3) is a commonly used industrial chemical to which exposure at high concentrations can result in severe skin damage. Moreover, high levels of ammonia in the human body can lead to hyperammonemia conditions and enhanced cancer metabolism. In this work, the toxicity mechanism of NH3 has been studied against human dermal fibroblast (HDF) cells using surface-enhanced Raman spectroscopy (SERS). For this purpose, gold nanoparticles of size 50 nm have been prepared and used as probes for Raman signal enhancement, after being internalized inside HDF cells. Following the exposure to ammonia, HDF cells showed a significant variation in the protein ternary structure's signals, demonstrating their denaturation and oxidation process, together with early signs of apoptosis. Meaningful changes were observed especially in the Raman vibrations of sulfur-containing amino acids (cysteine and methionine) together with aromatic residues. Fluorescence microscopy revealed the formation of reactive oxygen and nitrogen species in cells, which confirmed their stressed condition and to whom the causes of protein degradation can be attributed. These findings can provide new insights into the mechanism of ammonia toxicity and protein oxidation at a single-cell level, demonstrating the high potential of the SERS technique in investigating the cellular response to toxic compounds
In Vitro versus In Vivo Phase Instability of Zirconia-Toughened Alumina Femoral Heads: A Critical Comparative Assessment
A clear discrepancy between predicted in vitro and actual in vivo surface phase stability of BIOLOX (R) delta zirconia-toughened alumina (ZTA) femoral heads has been demonstrated by several independent research groups. Data from retrievals challenge the validity of the standard method currently utilized in evaluating surface stability and raise a series of important questions: (1) Why do in vitro hydrothermal aging treatments conspicuously fail to model actual results from the in vivo environment? (2) What is the preponderant microscopic phenomenon triggering the accelerated transformation in vivo? (3) Ultimately, what revisions of the current in vitro standard are needed in order to obtain consistent predictions of ZTA transformation kinetics in vivo? Reported in this paper is a new in toto method for visualizing the surface stability of femoral heads. It is based on CAD-assisted Raman spectroscopy to quantitatively assess the phase transformation observed in ZTA retrievals. Using a series of independent analytical probes, an evaluation of the microscopic mechanisms responsible for the polymorphic transformation is also provided. An outline is given of the possible ways in which the current hydrothermal simulation standard for artificial joints can be improved in an attempt to reduce the gap between in vitro simulation and reality
Quantum Langevin equations for semiconductor light-emitting devices and the photon statistics at a low-injection level
From the microscopic quantum Langevin equations (QLEs) we derive the
effective semiconductor QLEs and the associated noise correlations which are
valid at a low-injection level and in real devices. Applying the semiconductor
QLEs to semiconductor light-emitting devices (LEDs), we obtain a new formula
for the Fano factor of photons which gives the photon-number statistics as a
function of the pump statistics and several parameters of LEDs. Key ingredients
are non-radiative processes, carrier-number dependence of the radiative and
non-radiative lifetimes, and multimodeness of LEDs. The formula is applicable
to the actual cases where the quantum efficiency differs from the
differential quantum efficiency , whereas previous theories
implicitly assumed . It is also applicable to the cases when
photons in each mode of the cavity are emitted and/or detected inhomogeneously.
When at a running point, in particular, our formula predicts
that even a Poissonian pump can produce sub-Poissonian light. This mechanism
for generation of sub-Poissonian light is completely different from those of
previous theories, which assumed sub-Poissonian statistics for the current
injected into the active layers of LEDs. Our results agree with recent
experiments. We also discuss frequency dependence of the photon statistics.Comment: 10 pages, 8 figure
Burst strength of BIOLOX\uaedelta femoral heads and its dependence on low-temperature environmental degradation
Zirconia-toughened alumina (ZTA) currently represents the bioceramic gold standard for load-bearing components in artificial hip joints. ZTA is long known for its high flexural strength and fracture toughness, both properties arising from a microscopic crack-tip shielding mechanism due to the stress-induced tetragonal-to-monoclinic (t\u2192m) polymorphic transformation of zirconia. However, there have been concerns over the years regarding the long-term structural performance of ZTA since the t\u2192m transformation also spontaneously occurs at the material's surface under low-temperature environmental conditions with a concomitant degradation of mechanical properties. Spontaneous surface degradation has been extensively studied in vitro, but predictive algorithms have underestimated the extent of in vivo degradation observed in retrievals. The present research focused on burst-strength assessments of
828 mm ZTA femoral before and after long-term in vitro hydrothermal ageing according to ISO 7206-10. An average burst strength of 52 kN was measured for pristine femoral heads. This value was 3c36% lower than results obtained under the same standard conditions by other authors. A further loss of burst strength 3c13% in ultimate load) was observed after hydrothermal ageing, with increased surface monoclinic content ranging from 3c6% to >50%. Nevertheless, the repetitively stressed and hydrothermally treated ZTA heads exceeded the minimum burst strength stipulated by the US Food and Drug Administration (FDA) despite severe test conditions. Lastly, Raman spectroscopic assessments of phase transformation and residual stresses on the fracture surface of the femoral heads were used to clarify burst-strength fluctuations and the effect of hydrothermal ageing on the material's overall strength degradation
Thermal and back-action noises in dual-sphere gravitational-waves detectors
We study the sensitivity limits of a broadband gravitational-waves detector
based on dual resonators such as nested spheres. We determine both the thermal
and back-action noises when the resonators displacements are read-out with an
optomechanical sensor. We analyze the contributions of all mechanical modes,
using a new method to deal with the force-displacement transfer functions in
the intermediate frequency domain between the two gravitational-waves sensitive
modes associated with each resonator. This method gives an accurate estimate of
the mechanical response, together with an evaluation of the estimate error. We
show that very high sensitivities can be reached on a wide frequency band for
realistic parameters in the case of a dual-sphere detector.Comment: 10 pages, 7 figure
The promoter from SlREO, a highly-expressed, root-specific Solanum lycopersicum gene, directs expression to cortex of mature roots
Root-specific promoters are valuable tools for targeting transgene expression, but many of those already described have limitations to their general applicability. We present the expression characteristics of SlREO, a novel gene isolated from tomato (Solanum lycopersicum L.). This gene was highly expressed in roots but had a very low level of expression in aerial plant organs. A 2.4-kb region representing the SlREO promoter sequence was cloned upstream of the uidA GUS reporter gene and shown to direct expression in the root cortex. In mature, glasshouse-grown plants this strict root specificity was maintained. Furthermore, promoter activity was unaffected by dehydration or wounding stress but was somewhat suppressed by exposure to NaCl, salicylic acid and jasmonic acid. The predicted protein sequence of SlREO contains a domain found in enzymes of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. The novel SlREO promoter has properties ideal for applications requiring strong and specific gene expression in the bulk of tomato root tissue growing in soil, and is also likely to be useful in other Solanaceous crop
Maximal Spontaneous Photon Emission and Energy Loss from Free Electrons
Free electron radiation such as Cerenkov, Smith--Purcell, and transition
radiation can be greatly affected by structured optical environments, as has
been demonstrated in a variety of polaritonic, photonic-crystal, and
metamaterial systems. However, the amount of radiation that can ultimately be
extracted from free electrons near an arbitrary material structure has remained
elusive. Here we derive a fundamental upper limit to the spontaneous photon
emission and energy loss of free electrons, regardless of geometry, which
illuminates the effects of material properties and electron velocities. We
obtain experimental evidence for our theory with quantitative measurements of
Smith--Purcell radiation. Our framework allows us to make two predictions. One
is a new regime of radiation operation---at subwavelength separations, slower
(nonrelativistic) electrons can achieve stronger radiation than fast
(relativistic) electrons. The second is a divergence of the emission
probability in the limit of lossless materials. We further reveal that such
divergences can be approached by coupling free electrons to photonic bound
states in the continuum (BICs). Our findings suggest that compact and efficient
free-electron radiation sources from microwaves to the soft X-ray regime may be
achievable without requiring ultrahigh accelerating voltages.Comment: 7 pages, 4 figure
Raman Fingerprints of SARS-CoV‐2 Omicron Subvariants: Molecular Roots of Virological Characteristics and Evolutionary Directions
The latest RNA genomic mutation of SARS-CoV-2 virus, termed the
Omicron variant, has generated a stream of highly contagious and antibody-resistant
strains, which in turn led to classifying Omicron as a variant of concern. We
systematically collected Raman spectra from six Omicron subvariants available in
Japan (i.e., BA.1.18, BA.2, BA.4, BA.5, XE, and BA.2.75) and applied machinelearning algorithms to decrypt their structural characteristics at the molecular scale.
Unique Raman fingerprints of sulfur-containing amino acid rotamers, RNA purines
and pyrimidines, tyrosine phenol ring configurations, and secondary protein
structures clearly differentiated the six Omicron subvariants. These spectral
characteristics, which were linked to infectiousness, transmissibility, and propensity
for immune evasion, revealed evolutionary motifs to be compared with the outputs
of genomic studies. The availability of a Raman “metabolomic snapshot”, which was
then translated into a barcode to enable a prompt subvariant identification, opened
the way to rationalize in real-time SARS-CoV-2 activity and variability. As a proof of concept, we applied the Raman barcode
procedure to a nasal swab sample retrieved from a SARS-CoV-2 patient and identified its Omicron subvariant by coupling a
commercially available magnetic bead technology with our newly developed Raman analyses
- …