356 research outputs found

    Isolation of a Klebsiella pneumoniae Isolate of Sequence Type 258 Producing KPC-2 Carbapenemase in Korea

    Get PDF
    Carbapenem-resistant Klebsiella pneumoniae isolates producing K. pneumoniae carbapenemases (KPC) were first reported in the USA in 2001, and since then, this infection has been reported in Europe, Israel, South America, and China. In Korea, the first KPC-2-producing K. pneumoniae sequence type (ST) 11 strain was detected in 2010. We report the case of a patient with a urinary tract infection caused by KPC-2-producing K. pneumoniae. This is the second report of a KPC-2-producing K. pneumoniae infection in Korea, but the multilocus sequence type was ST258. The KPC-2-producing isolate was resistant to all tested β-lactams (including imipenem and meropenem), amikacin, tobramycin, ciprofloxacin, levofloxacin, and trimethoprim-sulfamethoxazole, but was susceptible to gentamicin, colistin, polymyxin B, and tigecycline. The KPC-2-producing isolate was negative to phenotypic extended-spectrum β-lactamase (ESBL) and AmpC detection tests and positive to modified Hodge test and carbapenemase inhibition test with aminophenylboronic acid

    Farmers' Perspectives of the Benefits and Risks in Precision Livestock Farming in the EU Pig and Poultry Sectors

    Get PDF
    Simple Summary Smart farming is a concept of agricultural innovation that combines technological, social, economic and institutional changes. It employs novel practices of technologies and farm management at various levels (specifically with a focus on the system perspective) and scales of agricultural production, helping the industry meet the challenges stemming from immense food production demands, environmental impact mitigation and reductions in the workforce. Precision Livestock Farming (PLF) systems will help the industry meet consumer expectations for more environmentally and welfare-friendly production. However, the overwhelming majority of these new technologies originate from outside the farm sector. The adoption of new technologies is affected by the development, dissemination and application of new methodologies, technologies and regulations at the farm level, as well as quantified business models. Subsequently, the utilization of PLF in the pig and especially the poultry sectors should be advocated (the latter due to the foreseen increase in meat production). Therefore, more significant research efforts than those that currently exist are mainly required in the poultry industry. The investigation of farmers' attitudes and concerns about the acceptance of technological solutions in the livestock sector should be integrally incorporated into any technological development.Abstract More efficient livestock production systems are necessary, considering that only 41% of global meat demand will be met by 2050. Moreover, the COVID-19 pandemic crisis has clearly illustrated the necessity of building sustainable and stable agri-food systems. Precision Livestock Farming (PLF) offers the continuous capacity of agriculture to contribute to overall human and animal welfare by providing sufficient goods and services through the application of technical innovations like digitalization. However, adopting new technologies is a challenging issue for farmers, extension services, agri-business and policymakers. We present a review of operational concepts and technological solutions in the pig and poultry sectors, as reflected in 41 and 16 European projects from the last decade, respectively. The European trend of increasing broiler-meat production, which is soon to outpace pork, stresses the need for more outstanding research efforts in the poultry industry. We further present a review of farmers' attitudes and obstacles to the acceptance of technological solutions in the pig and poultry sectors using examples and lessons learned from recent European projects. Despite the low resonance at the research level, the investigation of farmers' attitudes and concerns regarding the acceptance of technological solutions in the livestock sector should be incorporated into any technological development

    Molecular Dissection of an Outbreak of Carbapenem-Resistant Enterobacteriaceae Reveals Intergenus KPC Carbapenemase Transmission through a Promiscuous Plasmid

    Get PDF
    Carbapenem-resistant Enterobacteriaceae (CRE) have emerged as major causes of health care-associated infections worldwide. This diverse collection of organisms with various resistance mechanisms is associated with increased lengths of hospitalization, costs of care, morbidity, and mortality. The global spread of CRE has largely been attributed to dissemination of a dominant strain of Klebsiella pneumoniae producing a serine β-lactamase, termed K. pneumoniae carbapenemase (KPC). Here we report an outbreak of KPC-producing CRE infections in which the degree of horizontal transmission between strains and species of a promiscuous plasmid is unprecedented. Sixteen isolates, comprising 11 unique strains, 6 species, and 4 genera of bacteria, were obtained from 14 patients over the first 8 months of the outbreak. Of the 11 unique strains, 9 harbored the same highly promiscuous plasmid carrying the KPC gene blaKPC. The remaining strains harbored distinct blaKPC plasmids, one of which was carried in a strain of Klebsiella oxytoca coisolated from the index patient and the other generated from transposition of the blaKPC element Tn4401. All isolates could be genetically traced to the index patient. Molecular epidemiological investigation of the outbreak was aided by the adaptation of nested arbitrary PCR (ARB-PCR) for rapid plasmid identification. This detailed molecular genetic analysis, combined with traditional epidemiological investigation, provides insights into the highly fluid dynamics of drug resistance transmission during the outbreak

    Nosocomial Outbreak of Carbapenem-Resistant Acinetobacter baumannii in Intensive Care Units and Successful Outbreak Control Program

    Get PDF
    Acinetobacter baumannii has been increasingly reported as a significant causative organism of various nosocomial infections. Here we describe an outbreak of carbapenem-resistant A. baumannii (CRAB) in the ICUs of a Korean university hospital, along with a successful outbreak control program. From October 2007 through July 2008, CRAB was isolated from 57 ICU patients. Nineteen patients were diagnosed as being truly infected with CRAB, four of whom were presumed to have died due to CRAB infection, producing a case-fatality rate of 21.1%. In surveillance of the environment and the healthcare workers (HCWs), CRAB was isolated from 24 (17.9%) of 135 environmental samples and seven (10.9%) of 65 HCWs. The pulsed field gel electrophoresis patterns showed that the isolates from patients, HCWs, and the environment were genetically related. Control of the outbreak was achieved by enforcing contact precautions, reducing environmental contamination through massive cleaning, and use of a closed-suctioning system. By August 2008 there were no new cases of CRAB in the ICUs. This study shows that the extensive spread of CRAB can happen through HCWs and the environmental contamination, and that proper strategies including strict contact precautions, massive environmental decontamination, and a closed-suctioning system can be effective for controlling CRAB outbreaks

    The combination of colistin and doripenem is synergistic against Klebsiella pneumoniae at multiple inocula and suppresses colistin resistance in an in vitro pharmacokinetic/pharmacodynamic model

    Get PDF
    There has been a resurgence of interest in aerosolization of antibiotics for treatment of patients with severe pneumonia caused by multidrug-resistant pathogens. A combination formulation of amikacin-fosfomycin is currently undergoing clinical testing although the exposure-response relationships of these drugs have not been fully characterized. The aim of this study was to describe the individual and combined antibacterial effects of simulated epithelial lining fluid exposures of aerosolized amikacin and fosfomycin against resistant clinical isolates of Pseudomonas aeruginosa (MICs of 16 mg/liter and 64 mg/liter) and Klebsiella pneumoniae (MICs of 2 mg/liter and 64 mg/liter) using a dynamic hollow-fiber infection model over 7 days. Targeted peak concentrations of 300 mg/liter amikacin and/or 1,200 mg/liter fosfomycin as a 12-hourly dosing regimens were used. Quantitative cultures were performed to describe changes in concentrations of the total and resistant bacterial populations. The targeted starting inoculum was 10(8) CFU/ml for both strains. We observed that neither amikacin nor fosfomycin monotherapy was bactericidal against P. aeruginosa while both were associated with rapid amplification of resistant P. aeruginosa strains (about 10(8) to 10(9) CFU/ml within 24 to 48 h). For K. pneumoniae, amikacin but not fosfomycin was bactericidal. When both drugs were combined, a rapid killing was observed for P. aeruginosa and K. pneumoniae (6-log kill within 24 h). Furthermore, the combination of amikacin and fosfomycin effectively suppressed growth of resistant strains of P. aeruginosa and K. pneumoniae In conclusion, the combination of amikacin and fosfomycin was effective at maximizing bacterial killing and suppressing emergence of resistance against these clinical isolates

    Leveraging Rural Energy Investment for Parasitic Disease Control: Schistosome Ova Inactivation and Energy Co-Benefits of Anaerobic Digesters in Rural China

    Get PDF
    Cooking and heating remain the most energy intensive activities among the world's poor, and thus improved access to clean energies for these tasks has been highlighted as a key requirement of attaining the major objectives of the UN Millennium Development Goals. A move towards clean energy technologies such as biogas systems (which produce methane from human and animal waste) has the potential to provide immediate benefits for the control of neglected tropical diseases. Here, an assessment of the parasitic disease and energy benefits of biogas systems in Sichuan Province, China, is presented, highlighting how the public health sector can leverage the proliferation of rural energy projects for infectious disease control. ova) counted at the influent of two biogas systems were removed in the systems when adjusted for system residence time, an approximate 1-log removal attributable to sedimentation. Combined, these inactivation/removal processes underscore the promise of biogas infrastructure for reducing parasite contamination resulting from nightsoil use. When interviewed an average of 4 years after construction, villagers attributed large changes in fuel usage to the installation of biogas systems. Household coal usage decreased by 68%, wood by 74%, and crop waste by 6%. With reported energy savings valued at roughly 600 CNY per year, 2–3 years were required to recoup the capital costs of biogas systems. In villages without subsidies, no new biogas systems were implemented.Sustainable strategies that integrate rural energy needs and sanitation offer tremendous promise for long-term control of parasitic diseases, while simultaneously reducing energy costs and improving quality of life. Government policies can enhance the financial viability of such strategies by introducing fiscal incentives for joint sanitation/sustainable energy projects, along with their associated public outreach and education programs

    Multidrug-Resistant Acinetobacter spp.: Increasingly Problematic Nosocomial Pathogens

    Get PDF
    Pathogenic bacteria have increasingly been resisting to antimicrobial therapy. Recently, resistance problem has been relatively much worsened in Gram-negative bacilli. Acinetobacter spp. are typical nosocomial pathogens causing infections and high mortality, almost exclusively in compromised hospital patients. Acinetobacter spp. are intrinsically less susceptible to antibiotics than Enterobacteriaceae, and have propensity to acquire resistance. A surveillance study in Korea in 2009 showed that resistance rates of Acinetobacter spp. were very high: to fluoroquinolone 67%, to amikacin 48%, to ceftazidime 66% and to imipenem 51%. Carbapenem resistance was mostly due to OXA type carbapenemase production in A. baumannii isolates, whereas it was due to metallo-β-lactamase production in non-baumannii Acinetobacter isolates. Colistin-resistant isolates were rare but started to be isolated in Korea. Currently, the infection caused by multidrug-resistant A. baumannii is among the most difficult ones to treat. Analysis at tertiary care hospital in 2010 showed that among the 1,085 isolates of Acinetobacter spp., 14.9% and 41.8% were resistant to seven, and to all eight antimicrobial agents tested, respectively. It is known to be difficult to prevent Acinetobacter spp. infection in hospitalized patients, because the organisms are ubiquitous in hospital environment. Efforts to control resistant bacteria in Korea by hospitals, relevant scientific societies and government agencies have only partially been successful. We need concerted multidisciplinary efforts to preserve the efficacy of currently available antimicrobial agents, by following the principles of antimicrobial stewardship

    Group B streptococcus serotype prevalence in reproductive-age women at a tertiary care military medical center relative to global serotype distribution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group B <it>Streptococcus </it>(GBS) serotype (Ia, Ib, II-IX) correlates with pathogen virulence and clinical prognosis. Epidemiological studies of seroprevalence are an important metric for determining the proportion of serotypes in a given population. The purpose of this study was to evaluate the prevalence of individual GBS serotypes at Madigan Healthcare System (Madigan), the largest military tertiary healthcare facility in the Pacific Northwestern United States, and to compare seroprevalences with international locations.</p> <p>Methods</p> <p>To determine serotype distribution at Madigan, we obtained GBS isolates from standard-of-care anogenital swabs from 207 women of indeterminate gravidity between ages 18-40 during a five month interval. Serotype was determined using a recently described molecular method of polymerase chain reaction by capsular polysaccharide synthesis (cps) genes associated with pathogen virulence.</p> <p>Results</p> <p>Serotypes Ia, III, and V were the most prevalent (28%, 27%, and 17%, respectively). A systematic review of global GBS seroprevalence, meta-analysis, and statistical comparison revealed strikingly similar serodistibution at Madigan relative to civilian-sector populations in Canada and the United States. Serotype Ia was the only serotype consistently higher in North American populations relative to other geographic regions (p < 0.005). The number of non-typeable isolates was significantly lower in the study (p < 0.005).</p> <p>Conclusion</p> <p>This study establishes PCR-based serotyping as a viable strategy for GBS epidemiological surveillance. Our results suggest that GBS seroprevalence remains stable in North America over the past two decades.</p
    corecore