2,732 research outputs found

    A New Approach for Computing the Bandwidth Statistics of Avalanche Photodiodes

    Get PDF
    A new approach for characterizing the avalanche-buildup-time-limited bandwidth of avalanche photodiodes (APDs) is introduced which relies on the direct knowledge of the statistics of the random response time. The random response time is the actual duration of the APD’s finite buildup-limited random impulse response function. A theory is developed characterizing the probability distribution function (PDF) of the random response time. Recurrence equations are derived and numerically solved to yield the PDF of the random response time. The PDF is then used to compute the mean and the standard deviation of the bandwidth. The dependence of the mean and the standard deviation of the bandwidth on the APD mean gain and the ionization coefficient ratio is investigated. Exact asymptotics of the tail of the PDF of the response time are also developed to aid the computation efficiency. The technique can be readily applied to multiplication models which incorporate dead space and can be extended to cases for which the carrier ionization coefficient is position dependent

    Theory of photon coincidence statistics in photon-correlated beams

    Get PDF
    The statistics of photon coincidence counting in photon-correlated beams is thoroughly investigated considering the effect of the finite coincidence resolving time. The correlated beams are assumed to be generated using parametric downconversion, and the photon streams in the correlated beams are modeled by two partially correlated Poisson point processes. An exact expression for the mean rate of coincidence registration is developed using techniques from renewal theory. It is shown that the use of the traditional approximate rate, in certain situations, leads to the overestimation of the actual rate. The error between the exact and approximate coincidence rates increases as the coincidence-noise parameter, defined as the mean number of uncorrelated photons detected per coincidence resolving time, increases. The use of the exact statistics of the coincidence becomes crucial when the background noise is high or in cases when high precision measurement of coincidence is required. Such cases arise whenever the coincidence-noise parameter is even slightly in excess of zero. It is also shown that the probability distribution function of the time between consecutive coincidence registration can be well approximated by an exponential distribution function. The well-known and experimentally verified Poissonian model of the coincidence registration process is therefore theoretically justified. The theory is applied to an on-off keying communication system proposed by Mandel which has been shown to perform well in extremely noisy conditions. It is shown that the bit-error rate (BER) predicted by the approximate coincidence-rate theory can be significantly lower than the actual BER obtained using the exact theory

    Projection-based image registration in the presence of fixed-pattern noise

    Get PDF
    A computationally efficient method for image registration is investigated that can achieve an improved performance over the traditional two-dimensional (2-D) cross-correlation-based techniques in the presence of both fixed-pattern and temporal noise. The method relies on transforming each image in the sequence of frames into two vector projections formed by accumulating pixel values along the rows and columns of the image. The vector projections corresponding to successive frames are in turn used to estimate the individual horizontal and vertical components of the shift by means of a one-dimensional (1-D) cross-correlation-based estimator. While gradient-based shift estimation techniques are computationally efficient, they often exhibit degraded performance under noisy conditions in comparison to cross-correlators due to the fact that the gradient operation amplifies noise. The projection-based estimator, on the other hand, significantly reduces the computational complexity associated with the 2-D operations involved in traditional correlation-based shift estimators while improving the performance in the presence of temporal and spatial noise. To show the noise rejection capability of the projection-based shift estimator relative to the 2-D cross correlator, a figure-of-merit is developed and computed reflecting the signal-to-noise ratio (SNR) associated with each estimator. The two methods are also compared by means of computer simulation and tests using real image sequences

    Reduction of Quantum Noise in Transmittance Estimation Using PhotoneCorrelated Beams

    Get PDF
    The accuracy of optical measurements at low light levels is limited by the quantum noise of the source and by the random nature of the interaction with the measured object. The source noise may be reduced by use of nonclassical photon-number squeezed light. This paper considers the use of two photon-correlated beams (generated, for example, by spontaneous parametric downconversion) to measure the optical transmittance of an object. The photons of each beam obey a random Poisson process, but are synchronized in time. One beam is used to probe the object while the other is used as a reference providing information on the realization of the random arrival of photons at the object. The additional information available by such measurement may be exploited to improve the accuracy of the measurement. Various estimators, including the maximum likelihood estimator, are considered and their performance is evaluated and compared with the measurement based on single-beam conventional (Poisson) source and maximally squeezed (fixed photon number) source. The performance advantage established in this paper depends on parameters such as the intensity of the source, the transmittance of the object, the quantum efficiency of the detectors, the background noise, and the degree of correlation of the photon numbers in the two beams

    An Analytical Approximation for the Excess Noise Factor of Avalanche Photodiodes with Dead Space

    Get PDF
    Approximate analytical expressions are derived for the mean gain and the excess noise factor of avalanche photodiodes including the effect of dead space. The analysis is based on undertaking a characteristic-equation approach to obtain an approximate analytical solution to the existing system of recurrence equations which characterize the statistics of the random multiplication gain. The analytical expressions for the excess noise factor and the mean gain are shown to be in good agreement with the exact results obtained from numerical solutions of the recurrence equations for values of the dead space reaching up to 20% of the width of the multiplication region

    Information theoretic approach for assessing image fidelity in photon-counting arrays

    Get PDF
    The method of photon-counting integral imaging has been introduced recently for three-dimensional object sensing, visualization, recognition and classification of scenes under photon-starved conditions. This paper presents an information-theoretic model for the photon-counting imaging (PCI) method, thereby providing a rigorous foundation for the merits of PCI in terms of image fidelity. This, in turn, can facilitate our understanding of the demonstrated success of photon-counting integral imaging in compressive imaging and classification. The mutual information between the source and photon-counted images is derived in a Markov random field setting and normalized by the source-image’s entropy, yielding a fidelity metric that is between zero and unity, which respectively corresponds to complete loss of information and full preservation of information. Calculations suggest that the PCI fidelity metric increases with spatial correlation in source image, from which we infer that the PCI method is particularly effective for source images with high spatial correlation; the metric also increases with the reduction in photon-number uncertainty. As an application to the theory, an image-classification problem is considered showing a congruous relationship between the fidelity metric and classifier’s performance

    Exact Analytical Formula for the Excess Noise Factor for Mixed Carrier Injection Avalanche Photodiodes

    Get PDF
    The well-known analytical formula for the excess noise factor associated with avalanche photodiodes (APDs), developed by R. J. McIntyre in 1966, assumes the injection of either an electron or a hole at the edge of the APD\u27s avalanche region. This formula is based on the statistics of the probabilities of carriers gaining and losing energy subject to high electric fields. However, this analytical formula, is not applicable in cases when photons are absorbed inside the avalanche region (even though the physics of the high field transport remains the same), and its use may severely underestimate or overestimate the actual excess noise factor depending on the absorption profile and the hole-to-electron ionization coefficient ratio, k. Here, an easy-to-use exact analytical formula is derived for the excess noise factor of APDs while taking into account a mixed-carrier initiated avalanche multiplication process, which is triggered by a parent electron-hole pair at an arbitrarily specified location within the multiplication region. The derivation relies on analytically solving a special case of a previously reported recursive integral equations [Hayat et al., IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 546-552, Mar. 1992.], and the result matches the formula reported by McIntyre in 1999 using a different and limited technique. In addition, an expression for the excess noise factor is presented in the case when the location of the parent electron-hole pair within the multiplication region obeys an arbitrary exponential distribution. The results show that in contrast to the case of edge parent-electron injection, when mixed injection is allowed even a small level of hole ionization (e.g., small k ~ 0.0001) causes the excess noise factor to increase dramatically, depending on the absorption profile as it ranges from narrow to flat within the multiplication region. The theoretical results are validated against experimental results for Si APDs

    Scene-based nonuniformity correction with video sequences and registration

    Get PDF
    We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance (or true scene value). These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and the corresponding observed values through a given detector, a curve-fitting procedure is used to estimate the individual detector response parameters. These can then be used to correct for detector nonuniformity. The strength of the algorithm lies in its simplicity and low computational complexity. Experimental results, to illustrate the performance of the algorithm, include the use of visible-range imagery with simulated nonuniformity and infrared imagery with real nonuniformity
    • …
    corecore