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Abstract 
We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array 
detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence 
of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of 
nonuniformity, sufficiently accurate registration may be possible with standard scene-based 
registration techniques. If the registration is accurate, and motion exists between the frames, then 
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groups of independent detectors can be identified that observe the same irradiance (or true scene 
value). These detector outputs are averaged to generate estimates of the true scene values. With 
these scene estimates, and the corresponding observed values through a given detector, a curve-fitting 
procedure is used to estimate the individual detector response parameters. These can then be used to 
correct for detector nonuniformity. The strength of the algorithm lies in its simplicity and low 
computational complexity. Experimental results, to illustrate the performance of the algorithm, include 
the use of visible-range imagery with simulated nonuniformity and infrared imagery with real 
nonuniformity. 

1. Introduction 
Focal-plane array (FPA) sensors are widely used in visible-light and infrared imaging systems for a 
variety of applications. A FPA sensor consists of a two-dimensional mosaic of photodetectors placed in 
the focal plane of an imaging lens. The wide spectral response and short response time of such arrays, 
along with their compactness and optical simplicity, give FPA sensors an edge over scanning systems in 
applications that demand high sensitivity and high frame rates. 

The performance of FPA’s is known, however, to be affected by the presence of spatial fixed-pattern 
noise that is superimposed on the true image.[1]-[3] This is particularly true for infrared FPA’s. This 
noise is attributed to the spatial nonuniformity in the photoresponses of the individual detectors in the 
array. Furthermore, what makes overcoming this problem more challenging is the fact that the spatial 
nonuniformity drifts slowly in time.[4] This drift is due to changes in the external conditions such as the 
surrounding temperature, variation in the transistor bias voltage, and the variation in the collected 
irradiance. In many applications the response of each detector is characterized by a linear model in 
which the collected irradiance is multiplied by a gain factor and offset by a bias term. The pixel-to-pixel 
nonuniformity in these parameters is therefore responsible for the fixed-pattern noise. 

Numerous nonuniformity correction (NUC) techniques have been developed over the years. For most 
of these techniques some knowledge of the true irradiance (true scene values) and the corresponding 
observed detector responses is essential. Different observation models and methods for extracting 
information about the true scene give rise to the variety of NUC techniques. A standard two-point 
calibration technique relies on knowledge of the true irradiance and corresponding detector outputs at 
two distinct levels. With this information the gain and the bias can be computed for each detector and 
used to compensate for nonuniformity. For infrared sensors two flat-field scenes are typically 
generated by means of a blackbody radiation source for this purpose.[1],[5],[6] Unfortunately, such 
calibration generally involves expensive equipment (e.g., blackbody sources, additional electronics, 
mirrors, and optics) and requires halting the normal operation of the camera for the duration of the 
calibration. This procedure may also reduce the reliability of the system and increase maintenance 
costs. 

Recently considerable research has been focused on developing NUC techniques that use only the 
information in the scene being imaged (no calibration targets). The scene-based NUC algorithms 
generally use an image sequence and rely on motion between frames. Scribner et al.[3],[7],[8] 
developed a least-mean-square-based NUC technique that resembles adaptive temporal high-pass 
filtering of frames. O’Neil[9],[10] developed a technique that uses a dither scan mechanism that results 
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in a deterministic pixel motion. Narendra and Foss,[11] and more recently, Harris[12] and Harris and 
Chiang,[13] developed algorithms based on the assumption that the statistics (mean and variance) of 
the irradiance are fixed for all pixels. Cain et al.[14] considered a Bayesian approach to NUC and 
developed a maximum-likelihood algorithm that jointly estimates the scene sampled on a high-
resolution grid, the detector parameters, and translational motion parameters. A statistical technique 
that adaptively estimates the gain and the bias using a constant-range assumption was developed 
recently by Hayat et al.[15] 

In this paper we consider a method to extract information about the true scene that exploits global 
motion between frames in a sequence. If reliable motion estimation (registration) is achievable in the 
presence of the nonuniformity, then the true scene value at a particular location and frame can be 
traced along a motion trajectory of pixels. This means that all the detectors along this trajectory are 
exposed to the same true scene value. If the gains and biases of the detectors are assumed to be 
uncorrelated along the trajectory, then we may obtain a reasonable estimate of the true scene by 
taking the average of these observed pixel values. This represents a simple motion-compensated 
temporal average. Furthermore, in a sequence of frames, each detector is potentially exposed to a 
number of scene values (which can be estimated). Thus the gain and bias of each detector can be 
estimated with a line-fitting procedure. The observed pixel values and the corresponding estimates of 
the true scene values form the points used in the line fitting. The procedure may be repeated 
periodically to account for drift in gain and bias. Although the proposed algorithm may be viewed as 
heuristic in nature, we believe that it is intuitive and that its strength lies in its simplicity and low 
computational cost. Furthermore, it appears to offer promising results on the data sets tested. 

The remainder of this paper is organized as follows. In Section 2 the proposed NUC algorithm is defined 
and a statistical error analysis is presented. In Section 3 experimental results are presented. These 
results illustrate the performance of the algorithm with visible-range images with simulated 
nonuniformities and forward-looking infrared (FLIR) imagery with real nonuniformities. Finally, some 
conclusions are presented in Section 4. 

2. Nonuniformity Correction 
In this section we describe the proposed NUC algorithm in detail and present a statistical analysis. The 
proposed technique is based on three steps, which are illustrated in Fig. 1. First, registration is 
performed on a sequence of raw frames. We show in the results section that, unless the levels of 
nonuniformity are high, a fairly accurate registration can be performed in the case of global motion. 
The registration algorithm used here is a gradient-based method.[16],[17] Other methods may also be 
suitable for this application. The next step in the proposed algorithm involves estimating the true scene 
data with a motion-compensated temporal average. Finally, the observed data and the estimated 
scene data are used to form an estimate of the nonuniformity parameters. These parameters can then 
be used to correct future frames with minimal computations. We now describe, in detail, the 
estimation of the true scene data and the nonuniformity parameters. 

A. Estimation of the True Scene 
Consider a sequence of desired (true) image frames that are free from the effects of detector 
nonuniformity. Let us define these data in lexicographical order such that z i(j) represents the jth pixel 
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value in the ith frame. Let N be the number of frames in a given sequence and P be the number of 
pixels per frame. 

Here we assume a linear detector response and model the nonuniformity of each detector with a gain 
and a bias. For the jth pixel of the ith frame, where 1 ≤ i ≤ N and 1 ≤ j ≤ P, the observed pixel value is 
given by (1) 

𝑥𝑥𝑖𝑖(𝑗𝑗) = 𝑎𝑎(𝑗𝑗)𝑧𝑧𝑖𝑖(𝑗𝑗) + 𝑏𝑏(𝑗𝑗), 

where the variable a(j) represents the gain of the jth detector and b(j) is the offset of the detector. 
These gains and biases are assumed to be constant for each detector over the duration of the N frame 
sequence. 

Let us assume that each ideal pixel value in the first frame maps to a particular pixel in all subsequent 
frames. Thus we neglect border effects and assume that no occlusion or perspective changes occur. 
This is often reasonable when objects are imaged at a relatively large distance where the motion is the 
result of small camera pointing angle movement and/or jitter. Furthermore, our mathematical 
development does not explicitly treat the case of subpixel motion (although the proposed algorithm 
can be used with subpixel motion). To describe this frame-to-frame pixel mapping or trajectory, let t i,j,k 
be the spatial index of z i(j) as it appears in the kth frame. This index is determined from the 
registration step. Thus (2) 

𝑧𝑧𝑖𝑖(𝑗𝑗) = 𝑧𝑧𝑘𝑘�𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘� 

for i = 1, 2, … , N, j = 1, 2, … , P, and k = 1, 2, … , N. An example illustrating the use of the notation is 
shown in Fig. 2. 

Here we adopt the assumption that the detector gains and biases are independent and identically 
distributed from pixel to pixel. We believe that this is reasonable for many applications. In this case let 
the probability density function of the gain and the bias parameters be denoted f a(x) and f b(x), 
respectively. To achieve relative NUC from pixel to pixel (without calibrated targets, absolute gain and 
bias values cannot be determined), there is no loss of generality in assuming that the mean of the gain 
parameters is 1, whereas the mean of the bias terms is 0. If so, the mean of an observed value is the 
desired scene value, E{ x i(j)} = z i(j). The probability density function of the observed value is given by  

(3) 

𝑓𝑓𝑥𝑥𝑖𝑖(𝑗𝑗)(𝑥𝑥) =
1

𝑧𝑧𝑖𝑖(𝑗𝑗)
𝑓𝑓𝑎𝑎[𝑧𝑧𝑖𝑖(𝑗𝑗)𝑥𝑥]  ∗  𝑓𝑓𝑏𝑏(𝑥𝑥), 

where * represents convolution. If the gains and the biases are Gaussian, x i(j) will also have a Gaussian 
distribution with mean z i(j). Furthermore, if the variance of the gains is σa 2, and is σb 2 for the biases, 
then the variance of x i(j) is σxi (j) 2 = [z i(j)σa]2 + σb 2. 

If motion is present in the scene, then one has the luxury of making multiple observations of the same 
scene value through independent detectors. In the case of Gaussian parameters the maximum-
likelihood estimate of the desired scene value is given by the sample mean estimate.[18] In particular, 
this estimate is 
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(4) 

𝑧𝑧
ˆ
𝑖𝑖(𝑗𝑗) =

1
𝑁𝑁
�𝑥𝑥𝑘𝑘�𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘� =

1
𝑁𝑁
�𝑎𝑎�𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘�𝑧𝑧𝑘𝑘�𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘� + 𝑏𝑏�𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘�,
𝑁𝑁

𝑘𝑘=1

𝑁𝑁

𝑘𝑘=1

 

which reduces to  

(5) 

𝑧𝑧
ˆ
𝑖𝑖(𝑗𝑗) =

1
𝑁𝑁
�  𝑎𝑎�𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘�𝑧𝑧𝑖𝑖(𝑗𝑗) + 𝑏𝑏�𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘�,
𝑁𝑁

𝑘𝑘=1

 

in light of Eq. (2). A convenient way to generate these sample mean estimates in practice is to register 
and align the temporal frames and then perform a temporal average at each pixel (motion-
compensated temporal average). The alignment can be done easily in the case of whole-pixel motion. 
In the case of subpixel motion, the alignment can be achieved by use of some appropriate 
interpolation method. The following statistical analysis, however, applies only to the whole-pixel 
motion case. 

Since the desired frames are all related by means of the motion parameters, an estimate for only one 
frame is needed (e.g., i = 1). We can obtain the others by simply applying the motion to the one 
estimated frame. In particular,  

(6) 

𝑧𝑧
ˆ
1(𝑗𝑗) = 𝑧𝑧

ˆ
2�𝑡𝑡1,𝑗𝑗,2� = ⋯ = 𝑧𝑧

ˆ
𝑁𝑁�𝑡𝑡1,𝑗𝑗,𝑁𝑁�. 

For Gaussian nonuniformity parameters these estimates are themselves Gaussian. In general, each 
estimate has a mean equal to the true scene value, E{ ẑ i(j)} = z i(j), and a variance of  

 

 

(7) 

σ
𝑧𝑧
ˆ
𝑖𝑖(𝑗𝑗)
2 =

[𝑧𝑧𝑖𝑖(𝑗𝑗)σ𝑎𝑎]2 + σ𝑏𝑏2

𝑁𝑁
. 

Thus the estimator variance is signal dependent. The larger z i(j), the greater the estimator’s sensitivity 
to σa. 

With an estimate of the desired scene data in hand, we now address the estimation of the 
nonuniformity parameters. By estimating the nonuniformity parameters themselves, we show that a 
corrected image can be obtained with lower error variance than that for the estimate in Eq. (5). 
Furthermore, in most applications, it is useful to know the nonuniformity parameters themselves. For 
example, knowing the parameters allows one to correct all subsequent frames affected by these 
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parameters with minimal computation (and without registration). It also provides insight into the 
nature and level of the system nonuniformity. 

B. Estimation of Bias 
Let us begin with the case of estimating the bias parameter when there is no gain nonuniformity. In 
practice this may be an important case, since the bias parameters tend to vary the most and therefore 
cannot easily be accounted for in an initial manufacturer or laboratory calibration. 

In the case of bias-only nonuniformity, the observation model reduces to  

(8) 

𝑥𝑥𝑖𝑖(𝑗𝑗) = 𝑧𝑧𝑖𝑖(𝑗𝑗) + 𝑏𝑏(𝑗𝑗). 

In light of this model a reasonable estimate of the bias parameter, b(j), can be obtained from each 
frame as  

(9) 

𝑏𝑏
ˆ
𝑖𝑖(𝑗𝑗) = 𝑥𝑥𝑖𝑖(𝑗𝑗) − 𝑧𝑧

ˆ
𝑖𝑖(𝑗𝑗) 

for 1 ≤ i ≤ N. Note that in general b� i(j) ≠ b� k(j) for k ≠ i. 

To analyze the estimate in Eq. (9), observe that the estimate of the scene from Eq. (5) can be simplified 
to  

(10) 

𝑧𝑧
ˆ
𝑖𝑖(𝑗𝑗) = 𝑧𝑧𝑖𝑖(𝑗𝑗) +

1
𝑁𝑁
�𝑏𝑏�𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘�.
𝑁𝑁

𝑘𝑘=1

  

Note that the mean-squared error (MSE) of the estimate is equal to the variance here, since the 
estimate ẑ i(j) is unbiased. In the case of independent and identically distributed Gaussian biases, we 
obtain this MSE from Eq. (7) by setting σa = 0, and it is given by σb 2/N. With Eqs. (8)–(10) for each 
frame the bias estimate, b� i(j), can be written as  

(11) 

𝑏𝑏
ˆ
𝑖𝑖(𝑗𝑗) = 𝑏𝑏(𝑗𝑗) −

1
𝑁𝑁
�𝑏𝑏�𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘�,
𝑁𝑁

𝑘𝑘=1

  

and the error is therefore  

(12) 

𝑒𝑒𝑖𝑖(𝑗𝑗) = 𝑏𝑏(𝑗𝑗) − 𝑏𝑏
ˆ
𝑖𝑖(𝑗𝑗) =

1
𝑁𝑁
�𝑏𝑏�𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘�.
𝑁𝑁

𝑘𝑘=1

  

Thus the error is zero mean, and the MSE [the variance of b� i(j)] is σei (j) 2 = σb 2/N. 
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In general it is intuitively clear that an improved estimate of b(j) can be obtained by collective use of 
information from all the frames. For example, we can take the average of the b� i(j) over i to obtain the 
estimator  

(13) 

𝑏𝑏
ˆ
(𝑗𝑗) =

1
𝑁𝑁
�𝑏𝑏

ˆ
𝑖𝑖(𝑗𝑗).

𝑁𝑁

𝑖𝑖=1

  

With Eqs. (11) and (13) this estimator can be equivalently expressed as  

(14) 

𝑏𝑏
ˆ
(𝑗𝑗) = 𝑏𝑏(𝑗𝑗) −

1
𝑁𝑁2��𝑏𝑏�𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘�

𝑁𝑁

𝑘𝑘=1

 .

𝑁𝑁

𝑖𝑖=1

 

Thus the error associated with b�(j) is  

(15) 

𝑒𝑒(𝑗𝑗) = 𝑏𝑏(𝑗𝑗) − 𝑏𝑏
ˆ
(𝑗𝑗) =

1
𝑁𝑁2��𝑏𝑏�𝑡𝑡𝑖𝑖,𝑗𝑗,𝑘𝑘�.

𝑁𝑁

𝑘𝑘=1

 

𝑁𝑁

𝑖𝑖=1

 

Note however that, owing to the nature of the motion trajectories, some of the biases in the double 
sum are repeated. That is, the sum does not involve N 2 distinct biases, and the redundancy will 
depend on the specific motion trajectory. 

A lower bound on the MSE can be specified when we recognize that the best-case trajectory is the one 
that results in the least number of redundant terms in Eq. (15). An example of one such trajectory in 
the case of three frames is illustrated in Fig. 3. The circle, box, and cross represent three true scene 
values that are observed by the different detectors. Note that the trajectory for the cross is given by t 
1,10,1 = 10, t 1,10,2 = 11, and t 1,10,3 = 15. The other trajectories are similar. When the three trajectories are 
superimposed on one frame (bottom figure), it becomes clear which detectors are involved in the sum 
in Eq. (15). In particular, one term is present N times and the others are present only once. With this 
fact, a lower bound on the MSE can be shown to be  

(16) 

σ𝑒𝑒(𝑗𝑗)
2 ≥ �

2
𝑁𝑁2 −

1
𝑁𝑁3� σ𝑏𝑏

2 . 

We can also determine an upper bound for the MSE by looking at the worst case. The fewest 
independent biases exist in the sum when the motion is global and linear. Here 2N - 1 independent 
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biases are found in the sum. One bias is included N times, whereas two are included N - 1 times, and 
two more are seen N - 2 times, etc. Using this observation, the worst-case MSE can be computed as  

(17) 

σ𝑒𝑒(𝑗𝑗)
2 ≤ �

2
3𝑁𝑁

+
1

3𝑁𝑁3� σ𝑏𝑏
2 . 

The upper and the lower bounds are shown in Fig. 4 as functions of N, where σb 2 = 1. Note that the 
estimate does not improve dramatically after approximately N = 20. Note also that the error bounds 
for the estimate b�(j), denoted σe(j), are lower than the single frame error σei (j). This clearly 
demonstrates the benefit of forming an average of b� i(j) over i for the final estimate. 

Once the biases are estimated, corrected frames may be obtained with  

(18) 

𝑧𝑧
ˆ
𝑖𝑖
𝑐𝑐(𝑗𝑗) = 𝑥𝑥𝑖𝑖(𝑗𝑗) − 𝑏𝑏

ˆ
(𝑗𝑗). 

This estimate is unbiased and has an error given by that in Eq. (15). Note that the MSE of this estimate 
[bounded by relations (16) and (17) when motion exists] is lower than that for the motion-
compensated temporal average. The biases can be reestimated periodically to account for slow drift in 
the parameters. 

C. Estimation of Gain and Bias 
This subsection describes the estimation of the nonuniformity parameters a(j) and b(j), given the scene 
estimate from Eq. (5) and the observed data. To begin, we express the estimated scene in terms of the 
desired (true) value plus an estimator error term,  

(19) 

𝑧𝑧
ˆ
𝑖𝑖(𝑗𝑗) = 𝑧𝑧𝑖𝑖(𝑗𝑗) + η𝑖𝑖(𝑗𝑗). 

The estimator error ηi(j) is a zero-mean Gaussian random variable with a variance given by Eq. (7). 
Using (19) in conjunction with our original nonuniformity model in Eq. (1), we obtain  

(20) 

𝑥𝑥𝑖𝑖(𝑗𝑗) = 𝑎𝑎(𝑗𝑗) �𝑧𝑧
ˆ
𝑖𝑖(𝑗𝑗) − η𝑖𝑖(𝑗𝑗)� + 𝑏𝑏(𝑗𝑗) = 𝑎𝑎(𝑗𝑗)𝑧𝑧

ˆ
𝑖𝑖(𝑗𝑗) + 𝑏𝑏(𝑗𝑗) − 𝑎𝑎(𝑗𝑗)η𝑖𝑖(𝑗𝑗). 

For notational convenience define n i(j) ≜ -a(j)ηi(j), which is a zero-mean Gaussian random variable 
with variance  

(21) 

σ𝑛𝑛𝑖𝑖(𝑗𝑗)
2 = 𝑎𝑎(𝑗𝑗)2σ

𝑧𝑧
ˆ
𝑖𝑖(𝑗𝑗)2

= 𝑎𝑎(𝑗𝑗)2
[𝑧𝑧𝑖𝑖(𝑗𝑗)σ𝑎𝑎]2 + σ𝑏𝑏2

𝑁𝑁
. 

Rewriting the expression for x i(j) gives  
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(22) 

𝑥𝑥𝑖𝑖(𝑗𝑗) = 𝑎𝑎(𝑗𝑗)𝑧𝑧
ˆ
𝑖𝑖(𝑗𝑗) + 𝑏𝑏(𝑗𝑗) + 𝑛𝑛𝑖𝑖(𝑗𝑗). 

By using multiple frames for each detector, we obtain a set of equations from Eq. (22). Note that the 
noise term will be signal dependent and will be correlated from frame to frame. This makes an 
optimum estimate trajectory dependent and difficult to obtain. We believe, however, that a least-
squares fit through the observed data and the estimated desired data yields a useful and practical 
solution. The least-squares solution is that which minimizes the quadratic form  

(23) 

𝐸𝐸�𝐚𝐚𝑗𝑗� = |𝐱𝐱𝑗𝑗 − 𝑍𝑍𝑗𝑗𝐚𝐚𝑗𝑗|2 = �𝐱𝐱𝑗𝑗 − 𝑍𝑍𝑗𝑗𝐚𝐚𝑗𝑗�
𝑇𝑇
�𝐱𝐱𝑗𝑗 − 𝑍𝑍𝑗𝑗𝐚𝐚𝑗𝑗�, 

where x j = [x 1(j), x 2(j), … , x N(j)]T, a j = [a(j), b(j)]T, and  

(24) 

𝑍𝑍𝑗𝑗 = �𝑧𝑧
ˆ
1(𝑗𝑗) 𝑧𝑧

ˆ
2(𝑗𝑗) ⋯ 𝑧𝑧

ˆ
𝑁𝑁(𝑗𝑗)

1 1 ⋯ 1
�
𝑇𝑇

. 

Differentiating with respect to the vector quantity a j and setting this to zero yields the well-known 
least-squares result[18]  

(25) 

𝐚𝐚
ˆ
𝑗𝑗 = 𝐚𝐚𝑗𝑗

arg min
�𝐱𝐱𝑗𝑗 − 𝑍𝑍𝑗𝑗𝐚𝐚𝑗𝑗�𝑇𝑇�𝐱𝐱𝑗𝑗 − 𝑍𝑍𝑗𝑗𝐚𝐚𝑗𝑗� = �𝑍𝑍𝑗𝑗𝑇𝑇𝑍𝑍𝑗𝑗�

−1
𝑍𝑍𝑗𝑗𝑇𝑇𝐱𝐱𝑗𝑗 , 

where â j = [â(j), b�(j)]T. 

This can be viewed as fitting a straight line between the estimates of the various true scene values and 
the corresponding outputs for a given detector. Note that, if the scene estimates have no error [i.e., n 
i(j) = 0, for 1 ≤ i ≤ N], we obtain a set of N consistent equations and the estimate in Eq. (25) would yield 
the exact solution. However, the scene estimates will invariably have some error in them. Thus it is 
important for there to be a relatively large range of observed values to get an accurate estimate of the 
gain and the bias. If the range of observed values is small compared with the error in the scene 
estimates, a reliable gain and bias estimate may not be possible with this least-squares method. More 
will be said about this in Subsection 3.B. Finally, with estimates of the gain and the bias in hand, the 
corrected frames are obtained with  

(26) 

𝑧𝑧
ˆ
𝑖𝑖
𝑐𝑐(𝑗𝑗) =

𝑥𝑥𝑖𝑖(𝑗𝑗) − 𝑏𝑏
ˆ
(𝑗𝑗)

𝑎𝑎
ˆ
(𝑗𝑗)

. 
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3. Experimental Results 
In this section a number of experimental results are presented. These include the use of visible-range 
images with simulated nonuniformities and FLIR video with real nonuniformities. First, however, an 
analysis of registration accuracy in the presence of nonuniformity is presented. 

A. Registration Accuracy with Nonuniformity 
Since registration is the key to the proposed algorithm, here we investigate the ability of the selected 
registration algorithm to operate in the presence of nonuniformity. To do so, a 128 × 128 visible-range 
8-bit gray-scale image is first globally shifted according to a known trajectory. The shifted frames are 
then corrupted with simulated Gaussian gain and bias nonuniformity. A typical corrupted image is 
shown in Fig. 6(b) below, where the gain standard deviation is 0.1 and the standard deviation of the 
bias nonuniformity is 10. The images are then registered with an iterative gradient-based 
algorithm.[16],[17] The mean absolute error between the true and the estimated trajectory is 
calculated for various levels of nonuniformity. The resulting errors are shown in Fig. 5. Note that the 
mean absolute error is less than one pixel spacing when σa and σb are less than approximately 0.3 and 
50, respectively. Thus, for light to moderate levels of nonuniformity, such registration may be 
sufficiently accurate. 

If the nonuniformities are too large to obtain good registration initially, it may be necessary to use 
another NUC technique to begin. For example, the algorithm developed by Hayat et al.[15] can be 
used, since it does not rely on registration. Once the nonuniformity is sufficiently reduced, the 
proposed method can be used for periodic updates. Such a procedure may offer a computational 
savings (particularly for the simple bias-only correction). It is also possible to use the proposed method 
iteratively as a means of coping with large nonuniformities. 

B. Nonuniformity Correction with Simulated Data 
A sequence of 20 frames of the visible-range data with simulated nonuniformity is used to test the 
proposed gain and bias estimation algorithm. The first ideal frame with no nonuniformity is shown in 
Fig. 6(a). This frame with simulated nonuniformity (σa = 0.1 and σb = 10) is shown in Fig. 6(b). The result 
of the motion-compensated temporal average is shown in Fig. 6(c). The estimated gains and biases are 
computed for each pixel and then used to correct the corrupted frames. The corrected first frame is 
shown in Fig. 6(d). Note that several of the pixels appear to be erroneous (i.e., too dark or light). This is 
because those detectors were not exposed to a sufficiently wide range of scene values in the 20-frame 
sequence. 

The insufficient range problem is illustrated more clearly in Fig. 7. In these plots the solid lines 
represent the true detector response curves. Now consider the 20 detector outputs (observed values) 
for a specific detector over the 20-frame sequence. These values are plotted against the true scene 
values (known because we simulated the nonuniformity) and are shown as circles. These lie exactly on 
the detector response curve. The x’s represent these same 20 detector outputs plotted against the 
corresponding estimated scene values. The dashed lines are the least-squares estimated response 
curves from these data. Figure 7(a) shows an example where the motion resulted in a large range of 
scene values through the given detector. In this case the algorithm produces an accurate gain and bias 
estimate. However, for some detectors, the motion does not generate a sufficiently large range of 
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values. An example of such a case is illustrated in Fig. 7(b). Note that the scene data (and the observed 
data) are tightly clustered and that the estimated gain and bias are far from the correct values. 

For detectors producing a range of values (over the N frame sequence) that is below some threshold 
we recommend one of two approaches. One, those detectors can remain uncorrected for the given 
image sequence. During future cycles of the process it is likely that such a detector will see a sufficient 
range in scene values to allow for correction at that time. Alternatively, a bias-only estimate could be 
performed for those detectors (or all detectors). Such estimates do not require more than one scene 
value to be observed by a given detector. Using these effective biases can work reasonably well for a 
limited range of input values, provided that the gains do not vary too much. 

The effective bias approach is illustrated in Fig. 8. Figure 8(a) shows four possible detector response 
curves with varying gains and biases. Figure 8(b) shows the four responses after an effective bias 
correction is performed so that the detectors respond uniformly at a single point. Near this point, the 
corrected detectors will respond similarly. The useful range of operation will depend on the variation in 
the gains. Figure 9 shows the image from Fig. 6(a) corrected with bias-only correction across the entire 
image. 

C. Nonuniformity Correction in Forward-Looking Infrared Video 
Here we test the proposed algorithm, using a FLIR system with real nonuniformity. These data have 
been provided courtesy of the Multi-function Electro-Optics Sensor Branch at the Air Force Research 
Labs, Wright Patterson Air Force Base Ohio. The FLIR uses a 128 × 128 Amber AE-4128 infrared FPA. 
The FPA is composed of indium–antimonide (InSb) detectors with a response in the 3–5 µm 
wavelength band. This system has square detectors of size a = b = 0.040 mm. The imager is equipped 
with 100-mm f/3 optics. A sequence of approximately 3000 frames was acquired by manual panning of 
the imager from a tower causing a global shift in the frames. The acquisition frame rate is 
approximately 30 frames/s. A typical frame with no NUC is shown in Fig. 10(a). This frame shows a road 
crossing the field of view with a variety of trailers and vehicles in the top portion of the image. 

A set of 30 frames is registered, and a motion-compensated temporal average is computed [Fig. 10(b)]. 
Subpixel registration was performed, and the alignment was done with bilinear interpolation. The 
effective bias terms are estimated and are shown in Fig. 10(c). The first frame, corrected with these 
biases, is shown in Fig. 10(d). With the exception of some border effects (which occur because all 
frames do not share the exact same field of view), the results appear to be promising, on the basis of 
subject evaluation. The processing was performed with MATLAB software on a Sun Ultra10 computer. 
In our implementation (not fully optimized) the estimation of the biases and subsequent correction of 
the 30-frame sequence takes approximately 15 s. 

A frame collected approximately 10 s apart from the 30-frame sequence was also corrected with these 
estimated effective biases. Here we wanted to evaluate how well one set of effective biases could 
perform on new data, not used in the bias estimation process. The corrupted frame is shown in Fig. 
11(a), and the corrected frame is shown in Fig. 11(b). This image also appears to show significant 
improvement. Thus it appears that no significant parameter drift has taken place in this short time. 
Furthermore, the image demonstrates that parameters estimated from one set of frames can be useful 
in correcting subsequent frames, which may contain different scenes. 
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4. Conclusions 
We have presented a scene-based NUC algorithm that exploits motion in an image sequence. We 
believe that the strength of the proposed algorithm lies in its simplicity and low computational 
complexity. The key requirement for the algorithm is accurate motion estimation. In the experimental 
results presented we have shown that, when relatively small to moderate levels of nonuniformity exist, 
it may be possible to perform accurate global registration. However, if severe nonuniformity is present, 
scene-based motion estimation may not be reliable.[19] With proper registration one can identify a 
trajectory where a given scene value is observed through multiple detectors. An average along this 
trajectory yields an estimate of the scene. The scene estimate, along with the corresponding observed 
data, are then used to form an estimate of the detector nonuniformity parameters. 

We have observed that the proposed least-squares gain and bias estimation procedure is sensitive to 
the range of scene values observed by a given detector. The bias-only estimation procedure, however, 
does not require more than one scene value to be observed by a detector. In this way the effective bias 
estimation procedure is more robust. However, if the actual gains do vary, the effective bias correction 
can make the detectors respond uniformly only at one specific irradiance level. When operating near 
this level, one can expect good NUC results with effective bias correction. 

The authors thank the members of the Multi-function Electro-Optics Sensor Branch at Air Force 
Research Labs, Wright Patterson Air Force Base, for providing the infrared imagery used here and for 
the helpful discussions that provided insight into the nonuniformity problem. This research was 
supported in part by the National Science Foundation (Career Program MIP-9733308). 

Figures 

 

Fig. 1 Block diagram of proposed NUC algorithm. 
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Fig. 2 Two frames showing an example of a motion trajectory. The shaded blocks represent true scene 
values that move from frame one to frame two. Note that z 2(13) = z 1(8). 

 

Fig. 3 Example of a three-frame trajectory for the best case. The cross, circle, and square represent 
different signal values. The bottom figure shows which signal levels are seen by which detectors during 



the course of the entire trajectory

 

Fig. 4 Standard deviation bounds for the bias estimate error where σb 2 = 1. 

 

 



Fig. 5 Registration accuracy with various levels of gain and bias nonuniformity. MAE, mean absolute 
error. 

 

Fig. 6 (a) True frame 1, (b) frame 1 with simulated nonuniformity, (c) motion-compensated temporal 
average, (d) corrected image with the least-squares parameters. 



 

Fig. 7 True detector response curves (solid lines) and estimated responses (dashed lines) when 
observed data has (a) good range (b) poor range. The detector outputs are plotted versus the true 
scene values and the estimated scene values. 



 

Fig. 8 Illustration of the process of effective bias correction. (a) Raw detector responses, (b) responses 
after effective bias correction. 

 



Fig. 9 Image with effective bias correction. 

 

Fig. 10 (a) Original FLIR image with nonuniformity, (b) motion-compensated temporal average, (c) 
estimated biases for each pixel, (d) corrected image. 



 

Fig. 11 (a) New FLIR image with nonuniformity (b), corrected image with biases calculated from 
previous data. 
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