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Abstract 
The statistics of photon coincidence counting in photon-correlated beams is thoroughly investigated considering 

the effect of the finite coincidence resolving time. The correlated beams are assumed to be generated using 

parametric downconversion, and the photon streams in the correlated beams are modeled by two partially 

correlated Poisson point processes. An exact expression for the mean rate of coincidence registration is 

developed using techniques from renewal theory. It is shown that the use of the traditional approximate rate, in 
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certain situations, leads to the overestimation of the actual rate. The error between the exact and approximate 

coincidence rates increases as the coincidence-noise parameter, defined as the mean number of uncorrelated 

photons detected per coincidence resolving time, increases. The use of the exact statistics of the coincidence 

becomes crucial when the background noise is high or in cases when high precision measurement of coincidence 

is required. Such cases arise whenever the coincidence-noise parameter is even slightly in excess of zero. It is 

also shown that the probability distribution function of the time between consecutive coincidence registration 

can be well approximated by an exponential distribution function. The well-known and experimentally verified 

Poissonian model of the coincidence registration process is therefore theoretically justified. The theory is 

applied to an on-off keying communication system proposed by Mandel which has been shown to perform well 

in extremely noisy conditions. It is shown that the bit-error rate (BER) predicted by the approximate 

coincidence-rate theory can be significantly lower than the actual BER obtained using the exact theory. 

Keywords 
Correlated photons, Photon coincidence, Accidental coincidence, Renewal theory, Bit-error rate, parametric 

downconversion 

1. Introduction 
A source of non-classical light that has generated considerable interest in recent years is photon-correlated 

beams. The light source takes the form of two beams, the photons of each arrive randomly, but the photons of 

the two beams are, under ideal conditions, perfectly synchronized in time and space. Photon correlated beams 

can be generated, for example, by spontaneous parametric downconversion 1, 2, 3, 4, 5. This is a nonlinear 

process in which each of the photons of a pump interacts with a medium exhibiting a second-order nonlinear 

effect and creates a twin pair of photons called signal and idler. Conservation of momentum ensures that if one 

photon is observed in one direction, its twin must be present in one and only one matching direction. If the 

pump is in a coherent state, the statistics of the photons in each of the twin beams obey a Poisson process, but 

the two processes are, under ideal conditions, completely correlated. Since the joint statistics of the photons of 

this light source have reduced uncertainty, this light source is squeezed 6, 7, 8, 9. Photon-correlated beams have 

been proposed for use in a number of applications including optical communications, transmittance estimation, 

imaging, microscopy, cryptography, tests of the quantum theory of light, and other 

applications 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21. 

In some applications, pairs of `coincident' photons from photon-correlated beams are used as the information-

bearing signal since these coincident photons can be distinguished from noise photons by virtue of their 

temporal coincidence. A common scheme for the measurement of coincident photons involves the use of two 

photodetectors and an electronic timer/counter 22, 23. The operation of such a photon coincidence scheme 

considered in this paper is described as follows 24, 25. The first photodetection by the signal-beam detector (SD) 

is used to trigger a timer and the first photodetection by the idler-beam detector (ID), following the SD 

detection, is used to stop the timer.3 If the time between the start and the stop of the timer is less than a 

prescribed threshold, called the coincidence resolving time, the counter is incremented by one. In this case, we 

say that a coincidence event is registered at the time of the photodetection by ID, and the search for subsequent 

coincidences starts afresh thereafter. On the other hand, if no photons are detected by ID within the 

coincidence resolving time, the coincidence-counting mechanism starts afresh thereafter and the timer will be 

re-triggered as soon as SD detects a photon, and so on. Note that for this coincidence-counting mechanism, if 

only a single photon is detected by SD within a resolving time and multiple photons are detected by ID within 

the same resolving time, then only one coincidence is registered (corresponding to the first photodetection by 

ID following the SD photodetection). In this scheme, the finite width of the resolving time used to register 

coincident photons allows a fraction of the unwanted uncorrelated photons (resulting from uncorrelated 
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photons) to contribute to the process of coincidence registration. This additional coincidence registration, which 

is referred to as accidental coincidence, becomes a limiting factor in applications when the average number of 

photons per coincidence resolution time is even slightly greater than zero. 

If the photon coincidence property of photon-correlated beams is to be capitalized on in suppressing noise 

photons (as in the case with the down converted light communication scheme proposed in the pioneering work 

of Mandel [10] which was also demonstrated by Hong et al. [11]), then knowledge of the effect of accidental 

coincidence is critical in understanding the performance advantage that photon-correlated beams can offer in 

comparison to systems using conventional light. The traditional expression for the rate of coincidence 

registration (the expression used by Mandel [10]) becomes inaccurate when the mean number of photons per 

resolving time is high (e.g., in excess of 0.1 in our examples). In such cases, our results show that the 

approximation leads to overestimating the coincidence rate considerably. Developing an exact theory of 

coincidence statistics is therefore needed to understand the statistics of coincidence counting in cases when the 

approximate rate is not accurate. In addition, the exact knowledge of the coincidence rate will definitively 

establish the conditions under which the use of photon-correlated light in various applications can offer a 

performance advantage over conventional light. The photon correlated light in this paper is assumed to be that 

generated using spontaneous parametric downconversion; nonetheless, the theory is applicable to other 

photon-correlated-light situations which can be approximated by our model. 

Although the theory is applied to an on-off keying optical communication system, the results are also applicable 

to other applications such as transmittance estimation [9], the measurement of quantum efficiency of a 

detector, microscopy, quantum cryptography [26], and to other radiometric measurement. In addition, the 

exact theory of coincidence statistics presented in this paper can also be extended to alternative coincidence 

counting schemes. For example, in positron emission tomography, a coincidence between twin photons 

(traveling in opposite directions and resulting from the decay of beta particles) is detected if the difference 

between the time-of-flight of the two photons is within a certain time window 27, 28, 29. Accidental coincidence 

resulting from non-twin photons can be detrimental to the quality of the reconstructed image 27, 30, 31, 32, 33. 

An exact statistical theory for coincidence can be useful in efforts to reduce the degrading effects of accidental 

coincidence. 

This paper is organized as follows. In Section 2, we develop a stochastic model for the photon streams in the 

photon-correlated beams and formally define coincidence events. In Section 3, we develop the exact statistics of 

the number of coincident photons including the mean rate of coincidence and the probability distribution 

function of the time between successive coincidence events. The results are compared to the traditional 

approximate results. In Section 4, we apply the theory to an on-off keying communication system and provide 

an assessment of the performance of the system. 

2. Model 

2.1. Joint statistics of the signal and idler photons 
We adopt a simple stochastic model for which the photon-correlated light beams are regarded as statistically 

correlated streams of photons 19, 20, 34, 35. The flux of photons in each beam can therefore be regarded as a 

point process [36], and these two point processes are statistically correlated. We will assume that the light in 

each beam is described by a Poisson point process. Under ideal conditions, the signal and idler photons are fully 

correlated, i.e., the detection of a signal-beam photon at a specific time and location dictates the detection of its 

twin photon at a prescribed time and location in the idler beam. In this ideal case, each Poisson process is a copy 

of the other. Such ideal conditions are achieved, for example, in spontaneous parametric downconversion when 

the pump is a monochromatic plane wave, the crystal dimensions are infinite, the signal and idler beams are 
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selected by perfectly matched apertures, and ideal detectors are used. In practice, these conditions are not met 

and the collected signal and idler beams photons are not fully correlated even when matched apertures are 

used 4, 5. Additionally, the transmission of the signal and idler beams through optical elements results in further 

reduction of the degree of correlation [16]. 

To account for the partial correlation of the signal and idler photon numbers, we adopt a simplified model in 

which the photon streams of the signal and idler beams are the superposition of totally correlated components 

and totally uncorrelated components [9]. Let λs and λi denote the total photon flux (mean number of photons 

per second) of the signal and idler channels, respectively. A fraction βs of the signal photons are coincident with 

a fraction βi of the idler photons so that βsλs=βiλi. For simplicity, we will assume that βs=βi=β and that λs=λi=λ. 

The downconversion parameter β therefore represents the fraction of the correlated photons in the signal and 

idler beams. We call such signal and idler photons fully-correlated or twin photons. The case β=1 corresponds to 

full correlation. The remaining fraction of signal photons, arriving at a rate (1−β)λ, are assumed to be totally 

uncorrelated with all the other photons. Finally, to capture the effect of stray light, photodetector dark current, 

and other sources of noise, we will assume that the noise photon fluxes μs and μi are added to the signal and 

idler channels, respectively. Unlike the uncorrelated component of the signal and idler photons the noise 

photons are typically not utilized to bear information [e.g., by modulating the intensity]. 

2.2. Coincidence counting 
Consider the coincidence counting scheme described in Section 1, and assume that the quantum efficiencies of 

the signal-beam and the idler-beam detectors are ηs and ηi, respectively. It is evident that coincidence events 

can occur between twin photons, uncorrelated signal photons, and noise photons alike due to the finite 

resolving time h and the uncertainty associated with the process of photodetection. Since uncorrelated photons 

and noise photons contribute to accidental coincidence in similar ways, we group them together as uncorrelated 

photons. Based on the type of photons (correlated or uncorrelated) contributing to coincidence registration, we 

can categorize the types of coincidence events as follows: 

1. Coincidence between a signal correlated photon and its twin in the idler beam: This situation occurs 

when both of the twin photons are detected. This type of coincidence is the key in discriminating against 

background noise. 

2. Coincidence registration due to a correlated photon in the signal beam and a non-twin photon in the 

idler beam: This situation occurs when the signal-channel correlated photon is detected but its twin in 

the idler channel is not detected. A coincidence may occur in this case if any photon is detected in the 

idler beam within the resolving time. 

3. Coincidence registration due to an uncorrelated signal-beam photon and an idler-beam photon: An 

uncorrelated signal-beam photon may trigger the counter and cause the registration of a coincidence 

event if any photon is detected from the idler channel within the resolving time. 

The coincidence events of types 2 and 3 above are unwanted coincidence events since they are nonexistent in 

the ideal case when the detectors are ideal and the resolving time is infinitesimal. 

As a result of the Poissonian statistics of the photons in the idler and the signal, the times between consecutive 

coincidence events are statistically independent. Moreover, since the intensities of the signal and idler beams 

are assumed constant (as in fully coherent light), the times between successive coincidences have identical 

statistics. 
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3. Statistics of photon coincidence 
We now proceed to develop an exact theory that characterizes the mean rate of coincidence registration. The 

approach is based on concepts from renewal theory [37]. For purposes of comparison, we first give a brief 

review of the traditional approximate statistics of coincidence 10, 11. For convenience, we denote the total rate 

of photodetection in each of the signal and idler beams, respectively, by 

(1)rs=ηs(λ+μs) 

and 

(2)ri=ηi(λ+μi). 

3.1. Traditional approximate theory of coincidence statistics 
The rationale of the traditional approach for finding the rate of coincidence can be stated as follows. The total 

rate of coincidence has two components: A contribution from twin photons (true coincidence) and a 

contribution from all other non-twin photons (accidental coincidence), including noise photons, uncorrelated 

signal and idler photons, and twin photons that are not detected by both detectors. Clearly, the contribution 

from detected twin photons occur at a rate ηsηiβλ. The total rate of photodetection from the signal beam, less 

the detection rate of twin photons, is therefore rs−ηsηiβλ. Similarly, the total photodetection rate of photons in 

the idler beam, less the detection rate of twin photons, is ri−ηsηiβλ. The rate of accidental coincidence 

registrations can be approximately calculated by taking the product of these reduced rates times the 

coincidence resolving time h. The approximate total rate of coincidence rc,approx is therefore 

(3) rc,approx.=ηsηiβλ+rs-ηsηiβλri-ηsηiβλh. 

Clearly, the first term in (3) is due to type 1 coincidence events as described in Section 2. The second term is due 

to accidental coincidence and it combines coincidence events of types 2 and 3. Using the mean rate formula in 

(3), we can obtain the mean number of coincidence events, 〈N(t)〉, in an interval [0,t] by simply taking the 

product of the rate and the length of the interval: 

(4) 〈N(t)〉=rc,approxt. 

The coincidence counting process N(t) is assumed to have Poisson statistics 6, 10. 

The approximate expression in (3) is accurate only if the mean number of photons per coincidence resolving 

time is much less than unity. To understand its limitations, consider the following scenario: Suppose that the 

signal-beam photon flux rate is moderately high so that it is likely to have more than one photon detection per 

resolving time. Now suppose that a photon triggers the coincidence counter, and further assume that other 

signal photons are detected within the resolving time following the triggering, then these additional signal 

photons will not contribute to coincidence events since the counter is not responsive to them during the 

resolving time. The approximate rate Eq. (3)does not take this factor into account and therefore overestimates 

the actual coincidence rate. However, if the resolving time is sufficiently small, so that the likelihood of detecting 

more than one photon is negligible, then the above situation will not have a significant impact and the 

approximation becomes accurate. The exact theory, developed in the next subsection, will provide a simple 

exact formula for the coincidence rate for any h. 
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3.2. Exact rate of coincidence registration: A renewal-theory approach 
In this subsection, we develop an exact expression for the mean rate of coincidence registrations. To our 

knowledge, this is the first time that this exact rate is reported. We first determine the average time between 

consecutive coincidence registration events and then take its reciprocal to obtain the desired coincidence rate. 

We now derive a set of renewal (or recurrence) equations for the mean of the random time C to the first 

coincidence random variable C. The mean rate of coincidence is then 1/〈C〉. Without loss of generality, 

assume that the coincidence counter starts at time t=0 and that the first photon detection by SD occurs at 

time ξ. Since the photon arrival in each channel is modeled by a Poisson process, the random time, X, to the first 

photon detection by SD is an exponentially-distributed random variable with mean 1/rs [36]. Thus, the 

probability density function of the random variable X is 

(5) fX(ξ)=rse−r s ξ,ξ≥0. 

Further, given that a photon is detected by SD at time ξ, the conditional probability that it is actually one of twin 

photons is simply the ratio between the detection rate of correlated photons by SD to the total detection rate by 

SD. This conditional probability is therefore 

𝛽𝜆𝜆 + 𝜇𝑠, 

and the conditional probability that the photon is not one of the correlated photons is of course 

1-βλλ+μs=(1-β)λ+μsλ+μs. 

In addition, we will later use the fact that the probability that a photon is detected by ID in any time increment  

[ξ, ξ + dξ] is 𝑟ie
−𝑟i𝜉𝑑𝜉. 

Given the condition that the first photon detection by SD occurs at time ξ, the events that follow can be 

decomposed, in a mutually exclusive way, into certain useful events that will facilitate the derivation of the 

expected length 〈C〉. These mutually exclusive events are described below. 

1. Define A1 as the event that the first photodetection by SD (at time ξ) is indeed a correlated 

photon and that its twin is also detected by ID. Observe that if A1 occurs, then a coincidence registration 

occurs at time ξ. Note that  

P(A1)=βληiλ+μs. 

2. Define A2 as the event that the first photodetection by SD (at time ξ) is a correlated photon, that its twin 

is not detected by ID, and that a photon is detected by ID in the interval [τ,τ+dτ] within h units of time 

following ξ. Here, a coincidence registration occurs at time ξ+τ if the event A2 occurs. Note that 

P(A2)=βλ(1-ηi)λ+μsrie
−r i τdτ. 

3. Define A3 as the event that the first photodetection by SD (at time ξ) is a correlated photon, that its twin 

is not detected by ID, and that no photons are detected by ID in the interval [ξ,ξ+h]. The occurrence 

of A3 implies that no coincidence event has been registered up to time ξ+h, and that the counter will 

therefore start afresh thereafter in search of coincidence events. Using the time ξ+h as a starting point, 

the time to the first coincidence registration is a random variable C ̃that has an identical probability 

distribution as that of C. Since the probability of not detecting any photons (by ID) in the interval [ξ,ξ+h] 

is 1-∫0hrie
−r i τdτ, the probability of the event A3 is 

P(A3)=βλ(1-ηi)λ+μse−r i h. 
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4. Define A4 as the event that the first photodetection by SD (at time ξ) is not a correlated photon and that 

a photon is detected by ID in the interval [τ,τ+dτ] within h units of time following ξ. In this case, a 

coincidence is registered at time τ+dτ if the event A4 occurs. Note that the probability of the event A4 is 

P(A4)=(1-βλλ+μs)(1-ηi)rie
−r i τdτ. 

5. Define A5 as the event that the first photodetection by SD (at time ξ) is not a correlated photon and that 

no photon is detected by ID in the interval [ξ,ξ+h]. Similarly to A3, the occurrence of A5 implies that no 

coincidence event is registered up to time ξ+h, and that the counter will therefore start afresh in search 

of coincidence events at time t=ξ+h. Using the time ξ+h as a starting point, the time to the first 

coincidence registration is a random variable C ̃that has an identical probability distribution as that of C. 

In this case, 

P(A5)=(1-βλλ+μs)(1-ηi)e
−r i h.. 

We now use the above events to observe that under the condition that the first photon detection by SD occurs 

at time ξ, the random variable C can be analyzed as follows: 

(6) C=ξ,if eventA1occurs,ξ+τ,if either eventA2or eventA4occur,ξ+h+Cĩf either eventA3or eventA5occur. 

By averaging C over the mutually exclusive events A1 through A5, and by using the fact that 〈C〉=〈C̃〉, we 

obtain an expression for the conditional mean of the time to the first coincidence registration given that the first 

photon detection by SD is at ξ. This conditional mean can be shown to be 

(7) E[C|X=ξ]=βλλ+μsηiξ+(1-ηi)(〈C〉+ξ+h)e−r I h+∫0h(1-ηi)(ξ+τ)rie
−r I τdτ+(1-β)λ+μsλ+μs(〈C〉 

+ξ+h)e−r i h+∫0h(ξ+τ)rie
−r i τdτ. 

Finally, to obtain the mean 〈C〉, we remove the conditioning in E[C|X=ξ] by averaging over all possible X, i.e., 

(8)〈C〉=∫0∞E[C|X=ξ]fX(ξ)dξ. 

Upon substituting (7) and (5) in (8) and carrying out the algebra, we obtain an expression for the mean rate of 

coincidence, rc=1/〈C〉, given by 

(9) rc=1-e−r i h1-ηiβλλ+μs1rs+1ri(1-e−r i h)1-ηiβλλ+μs. 

The rate equation (9) can be expressed in terms of a key parameter ρc=((1−β)λ+μi)ηih, called the coincidence-

noise parameter, which represents the mean number of detected uncorrelated photons per coincidence 

resolving time in the idler beam. Using this parameter, we obtain 

(10) rc=1-e−(η i λβh+ρ c )1-ηiβλλ+μs1rs+1ri(1-e−(η i λβh+ρ c ))1-ηiβλλ+μs. 

As expected, in the case of ideal coincidence counting (i.e., h=0 and in which case ρc=0), the formula 

for rc reduces to ηsηiβλ which is simply the rate of the simultaneous detection of fully correlated photons. 

Furthermore, an expansion of (9) in terms of the parameter h shows that the traditional formula given in (3) is a 

first-order approximation of the exact rate. Eq. (10)reveals exactly how the rate is dependent on the two factors 

that govern accidental coincidence, i.e., the accidental noise parameter ρc and the coincidence resolving time h. 

(Note that varying h alone has a different effect on rc than varying ρc while holding h fixed.) 

3.3. Probability distribution function of the time between coincidence events 
The knowledge of the mean rate of coincidence alone is not sufficient to describe the statistics of the number of 

coincidence events in a given time interval. What is required is knowledge of the probability density function of 

the random time C between successive coincidence counts. If this probability density function is exponential, 

https://www.sciencedirect.com/science/article/pii/S0030401899003843#FD10


then the coincidence registration process is Poissonian 35, 36 (i.e., the number of coincidence registrations in 

any time interval is a Poisson random variable with a mean value which can be determined by taking the 

product of the time interval and the coincidence rate given in (9)). We will show that the probability density 

function of the time between successive coincidence registrations is not exactly exponential but can be 

approximated accurately by an exponential probability density function. 

To derive an expression for the probability distribution function (PDF), FC(t), defined as P{C≤t}, we follow the 

same technique used to derive (7) and (8). In particular, we first evaluate the conditional PDF under the 

occurrence of each of the events A1 to A5, and then we take the average over these events. We omit the details 

of the derivation and only present the final result. For t≤h, 

(11) FC(t)=1-e−r s trse(r s −r i )t-rirs-ri, 

and for t>h, 

FC(t)=βληiλ+μs(1-e−r s t)+1-βληiλ+μs(1-e−r i h)(1-e−r s (t−h))+e−r s ter s h-1-rsrs-ri(e
(r s −r i )h-1) 

+e−r i h∫0t-hrse−r s sFC(t-s-h)ds, 

where rs and ri are given by (1) and (2), respectively. The above integral equation is solved numerically (using 

numerical integration and the initial values given in (11)) and the results are presented in the next subsection. 

3.4. Comparison between the exact and approximate statistics of coincidence 
The discrepancy between the exact results and the traditional approximation becomes insignificant when the 

quantity rih is very small. This condition occurs when either the coincidence-noise parameter ρcor the 

quantity ηiλβh are not `close' to zero. The results obtained from our examples indicate that if ρc>0.1, a 

noticeable error is observed in the approximation. In our examples, we assume that h=0.1 ns and that the 

downconversion parameter β is 0.5 [10]. We illustrate the effect of the parameter ρc by plotting the rate of 

coincidence as a function of ρc in two cases of high and low signal-to-noise ratio (SNR). We take the signal and 

idler photon fluxes as λ=1.8×108 photons/s [i.e., light in the ten pico Watt range], and the quantum 

efficiencies ηs and ηi both assume the value 0.1. For the high SNR case, as depicted in Fig. 1, the background-

noise flux is varied so that the coincidence-noise parameter ρc is increased to 0.2 (in this case, the minimum 

value for λ/μs is 1/10). For the low SNR case, the background-noise flux is varied so that the coincidence-noise 

parameter ρc is increases up to 0.4 (the minimum value for λ/μs is 1/20). It is seen from Fig. 1 that the error in 

the coincidence rate ranges from being negligible in the case ρc=0 to approximately 12% for the case ρc=0.1, and 

up to 32% when ρc=0.2. The error becomes much larger as the noise parameter increases (as seen from Fig. 2) 

reaching a value of 64% when ρc=0.4. Our results also indicate that the error in the approximation is negligible if 

the noise parameter is below 0.04 (corresponding to an error of 2%). 
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Fig. 1. The rate of coincidence registration as a function of the accidental noise parameter ρc. Solid and dashed lines 
represent the exact and approximate results, respectively. The following set of parameters are used: ηs=ηi=0.1, β=0.5, h=1 
ns, and λ=1.8×108 photons/s. The noise flux is varied so that the parameter ρc ranges from 0 to 0.2. 

 

Fig. 2. Same as Fig. 1 but in this case the noise flux is varied so that the parameter ρc ranges from 0 to 0.4. 

 

The dependence of the mean coincidence rate on the resolving time is depicted in Fig. 3, Fig. 4. Fig. 

3 corresponds to resolving times in the range 0∼0.5 ns, and the noise levels μs and μi are 

both λ/2=5×107photons/s. All the other parameters are as before. The exact rate of coincidence reveals that the 

accidental coincidence rate is a nonlinear function of the resolving time h. The nonlinearity becomes more 

severe as h increases, as seen from Fig. 4. We emphasize that the traditional approximate rate of coincidence 

yields the well-known linear dependence of the accidental coincidence on h. The knowledge of such nonlinear 

dependence of the accidental coincidence can be very useful in applications which are known to have a high 

level of such undesired accidental coincidence 27, 28, 29, 30, 31, 32, 33. 
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Fig. 3. The rate of coincidence registration as a function of the coincidence resolving time h. Solid and dashed lines 
represent the exact and approximate results, respectively. The following set of parameters are 
used: ηs=ηi=0.1, β=0.5, λ=1.8×108 photons/s and μs=μi=2×109 photon/s. 

 

Fig. 4. Same as Fig. 3 but in this case the coincidence resolving time h ranges from 0 to 4 ns. 

 

The discrepancy between exact and approximate results is also manifested in the probability distribution 

function of the random time between successive coincidence registrations. Fig. 5, Fig. 6 show a comparison 

between the exact and approximate PDF of the time between coincidence registrations for the cases ρc=0.1 

and ρc=0.2, respectively, where the correlated signal photon flux is taken as λ=1.8×108 photons/s. It is clear from 

(11) that the PDF of C is not an exponential PDF in the initial phase of the distribution where t≤h. The intuitive 

reason for this behavior is that when a finite coincidence counting resolving time is used, the process of 

registering coincident events is no longer memoryless. For example, it is impossible to register two consecutive 

coincidences within a counting time h, and this is a manifestation of `memory.' The plots of the exact PDF 

indicate, nonetheless, that for values of the normalized time t/h in excess of unity, the PDF of C can be well 

approximated by an exponential PDF. This observation justifies approximating the number of coincidence events 

in a given interval by a Poisson random variable which has been verified experimentally [6]. Equivalently, the 

coincidence registration, as a point process, can be approximated by a Poisson process. The key issue here is 

that the exact theory presented here enables us to predict the correct rate of this approximately Poisson 

process. 
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Fig. 5. The probability distribution function, as a function of the normalized time t/h, of the time between successive 
coincidence events. Solid and dashed lines represent the exact and approximate results, respectively. The following set of 
parameters are used: ηs=ηi=0.1, β=0.5, h=1 ns, and λ=1.8×108 photons/s. The noise parameter ρc is 0.1. 

 

Fig. 6. Same as Fig. 5 but the coincidence parameter is increased to 0.2. 

4. Application: Performance of an on-off keying communication system using 

photon correlated beams 
We now consider the optical communication system first proposed by Mandel [10] as shown schematically 

in Fig. 7. When the message `1' is transmitted (hypothesis H1), the photon fluxes of the signal and idler beams 

are λ+μs and λ+μi, respectively, and when the message `0' is transmitted (hypothesis H0), the signal and idler 

photon fluxes are respectively μs and μi. The coincidence counter counts coincident photons in a bit of 

duration T, and this coincidence count is used to determine the transmitted message. Let N0 and N1 denote the 

number of coincident photons per bit under hypotheses H0 and H1, respectively. Using the Poisson-process 

model for the coincidence registration processes (as justified in 3.4), the measured quantities N0 and N1 are 

modeled by Poisson random variables with means which can be computed using the theory of Section 3. These 

average registration counts can be computed exactly using (9) or approximately using (3) with the appropriate 

photon fluxes under each hypothesis. In particular, the exact averages are 

(12)〈N0〉 exact=1-e−r i0 h1rs0+1ri0(1-e−r i0 h)T, 

and 

(13) 〈N1〉 exact=rcT, 
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where rs0=ηsμs, ri0=ηiμi, and rc is given by (9). On the other hand, the approximate mean coincidence counts are 

(14) 〈N0〉 approx=ηsηiμsμihT 

and 

(15) 〈N1〉 approx=rc,approxT, 

where rc,approx is given by (3). 

 

Fig. 7. Schematic diagram of an on-off keying communication system using correlated-photons beams. 

We employ a threshold decision rule which announces H0 if the observed coincidence registration count is below 

the prescribed threshold, and announces H1 otherwise. From standard decision theory [38], the optimal 

threshold for the decision rule, which will minimize the bit error rate (BER), can be computed from the 

Poissonian distributions of N0 and N1. The optimal threshold rule is computed by selecting the threshold θ as the 

point of intersection of the conditional probability mass functions of N0 and N1, and can be shown to be 

θ=〈N1〉-〈N0〉log〈N1〉-log〈N0〉. 

We now compare the performance of the communication system when the exact and approximate coincidence 

statistics are used. Fig. 8 shows the BER as a function of the noise-parameter ρc. The coincidence parameter is 

varied by changing the background-noise photon flux μs. First, this curve shows the range of values of the 

accidental coincidence noise parameter ρc where exact and approximate results are similar. In particular, the 

exact and approximate BER are almost equal for values of ρc below 0.05 photons. However, the exact BER 

becomes higher than the approximate BER by a factor of 200 when ρc reaches 0.25. For noise parameters 

greater than 0.25, the BER obtained using the exact coincidence theory is greater than the ones obtained using 

the approximate theory by a factor ranging from 200 to 103. For example, when ρc=0.25 photons, the 

approximate BER is 8.72×10−9 while the exact BER is 2.28×10−6. The performance is therefore more sensitive 

to ρc than what had been originally predicted and reported in [10]. The dependence of the BER on the bit 

duration T is depicted in Fig. 9. It is seen that the BER computed using the exact theory is significantly greater 

than the results obtained from the approximate theory. 
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Fig. 8. The bit-error rate (BER) as a function of the coincidence-noise parameter ρc. Solid and dashed lines represent the 
exact and approximate results, respectively. The following set of parameters are used: ηs=ηi=0.1, β=0.5, h=1 ns, 
and λ=1.8×108 photons/s. The coincidence parameter is varied by changing the background noise flux μi. 

 

Fig. 9. The bit-error rate (BER) as a function of the bit duration T. Solid and dashed lines represent represent exact and 
approximate results, respectively. The following set of parameters are used: ηs=ηi=0.1, β=0.5, μi=2.0×109 photons/s, 
and λ=1.8×108 photons/s. 

 

Another factor that governs the performance of the system is the duration of the coincidence resolving 

window h. It is interesting to note that both the exact and approximate BER decrease as h increases, as seen 

from Fig. 10. However, the exact BER decreases with h at slower rate than the approximate BER, and more 

importantly, the exact BER eventually increases, as seen in Fig. 11. For the parameters used in our example, the 

exact BER decrease for h in the range 0.4 ns ∼ 5 ns, and it increase for values of h in excess of 8 ns. For h in the 

range 6 ns ∼ 7 ns, the exact BER is almost constant. This behavior of the BER cannot be predicted at all within 

the confines of the approximate theory of coincidence which yields an exponential decay of the BER as a 

function of h. 
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Fig. 10. The bit-error rate (BER) as a function of the coincidence resolving time h. Solid and dashed lines represent results 
obtained using the exact and approximate expressions, respectively, for the rate of coincidence. The following set of 
parameters are used: ηs=ηi=0.1, β=0.5, μi=2.0×109 photons/s, and λ=1.8×108 photons/s. The coincidence-noise 
parameter ρc is varied by changing coincidence resolving time h. 

 

Fig. 11. Exact bit-error rate (BER) as a function of the coincidence resolving time h. Other parametrs are the same as those 
corresponding to Fig. 10. 

5. Conclusions 
We have developed an exact theory for the statistics of coincidence in photon-correlated beams of coherent 

light taking into account the finite width of the coincidence resolving time. Our results extend the traditional 

approximate model for the rate of coincidence to cases when the mean number of detected photons per 

coincidence resolving time is not negligibly small. For example, it is seen from the cases considered that if the 

mean number of detected photons per coincidence resolving time is 0.1, the exact coincidence rate is 

approximately 12% lower than the approximate rate. It is shown that the dependence of the rate of coincidence 

on the coincidence resolving time is nonlinear, and the rate becomes progressively less than the traditional 

approximate prediction as the coincidence resolving time increases. Furthermore, an exact evaluation of the 

probability distribution function of the time between successive coincidence registrations is carried out 

providing a theoretical justification for the experimentally verified Poissonian statistics of the coincidence 

registration process. As an application to the theory, we considered the two-channel on-off communication 

scheme proposed by Mandel [10] and showed that the traditional approximation leads to overemphasizing the 

advantage of the communication scheme in situations when the background noise level is high. The theory 

presented can also be of benefit in efforts to reduce the degrading effect of accidental coincidence in positron 

emission tomography [33]. The derived expression for the exact rate of coincidence is simple and the technique 

https://www.sciencedirect.com/science/article/pii/S0030401899003843#FIG10
https://www.sciencedirect.com/science/article/pii/S0030401899003843#BIB10
https://www.sciencedirect.com/science/article/pii/S0030401899003843#BIB33


can be modified and extended to the case of partially coherent light where the photon flux is no longer 

deterministic. This can be done by first conditioning on a specific realization of the random photon flux and 

applying the current theory to determine the conditional rate of coincidence. We then could average the 

conditional rate over all possible realizations of the random photon flux to obtain the average rate of 

coincidence. The renewal-theory technique presented in this paper can also be modified to generalize the 

conventional photon correlation theory reported in [23] to cases when photon-correlated beams are used in 

place of conventional light. 
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