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Abstract  
A new approach for characterizing the avalanche-buildup-time-limited bandwidth of avalanche photodiodes 

(APDs) is introduced which relies on the direct knowledge of the statistics of the random response time. The 

random response time is the actual duration of the APD’s finite buildup-limited random impulse response 

function. A theory is developed characterizing the probability distribution function (PDF) of the random 

response time. Recurrence equations are derived and numerically solved to yield the PDF of the random 

response time. The PDF is then used to compute the mean and the standard deviation of the bandwidth. The 

dependence of the mean and the standard deviation of the bandwidth on the APD mean gain and the ionization 
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coefficient ratio is investigated. Exact asymptotics of the tail of the PDF of the response time are also developed 

to aid the computation efficiency. The technique can be readily applied to multiplication models which 

incorporate dead space and can be extended to cases for which the carrier ionization coefficient is position 

dependent. 

Keywords 
Avalanche buildup time, avalanche photodiode, bandwidth, dead space, impact ionization, impulse response, 

recurrence equations, time response. 

1. Introduction 
The demand for gigabit-rate fiber communication systems and the rising popularity of fiber optical links in 

RF/microwave systems have led to a substantial interest in avalanche photodiode (APD) structures with high 

gain-bandwidth products. However, the gain that APDs provide is accompanied by two types of uncertainty. 

Specially, randomness in the locations and the times at which impact ionizations take place within the 

multiplication region of the APD results in fluctuations in the gain and the duration of the time response [1]. The 

gain noise in APDs have been extensively studied over the years, starting with the pioneering work of McIntyre 

[2] for a variety of device structures and carrier multiplication models [3-12]. Although gain uncertainty plays an 

important role in the performance of APDs, it is the finiteness and randomness of the APD time response that 

give rise to intersymbol interference and can limit the bandwidth of communication systems. The bit error rate, 

in particular, is known to be dependent on the statistics of the APD random impulse response, or equivalently, 

on the statistics of the avalanche-buildup-time-limited random bandwidth of the APD. 

Traditionally, the statistics of the buildup-time-limited bandwidth of APDs are extracted from the statistics of the 

APD impulse response, as a function of time following initial photoexcitation. These statistics include the mean 

and the autocorrelation function of the impulse response function. For example, the mean 3dB bandwidth is 

directly calculated from the mean frequency response which is simply the Fourier transform of the mean 

impulse response function. Moreover, fluctuations about the mean 3dB bandwidth can be estimated by 

considering the one-standard-deviation upper and lower limits of the mean frequency response. Computation of 

the variance of the frequency response, however, involves taking the Fourier transform of the autocorrelation 

function of the impulse response. There has been a number of studies on the statistics of the impulse response 

function for conventional (continuous-multiplication) and staircase APDs of various structures [4, 13-20]. In 

addition, the statistics of the impulse response function for the dead-space multiplication model, for which the 

ionizations process has a non-localized nature, have also been studied [21]. Many of the techniques used to 

calculate the second order statistics of the impulse response in conventional APDs require intensive 

computations [16,21] and typically involve solving coupled integral or differential equations in four variables. 

Recently, Bandyopadhyay et al. [22] proposed a computationally simple approach for calculating the mean 

impulse response function. Their theory, however, does not address the variance and the autocorrelation 

function of the impulse response. 

In this paper, we introduce a new computationally efficient and direct method for calculating the statistics of the 

buildup-time-limited bandwidth which does not require calculating the statistics of the impulse response 

function. This method is based on the extracting the statistics of the bandwidth directly from the knowledge of 

the probability distribution function (PDF) of the random duration of the impulse response, which we will call 

the random response time. To do so, we develop a recurrence-based theory that characterizes the PDF of the 

random response time for double-carrier continuous multiplication APDs assuming uniform carrier ionization 

coefficients in the multiplication region. This model can readily incorporate the effect of dead space which has 

been receiving attention for the important role it plays in reducing multiplication noise in thin APDs [23-28].The 



PDF of the random response time is determined numerically by solving recurrence equations using a simple 

iteration technique. We also develop an analytical approximation for the tail of the PDF which can further 

simplify computations. The dependence of the mean and the standard deviation of the bandwidth on the mean 

gain and the hole-to-electron ionization ratio is then studied. Although the theory assumes uniform ionization 

coefficients, the recurrence method can be readily extended to devices with strongly position dependent 

electric fields. The reported theory also has the potential for providing estimates of the statistics of the gain-

bandwidth product of APDs [29]. 

2. Multiplication model 
Consider an APD with a multiplication region of width 𝑤. A parent photo-electron is injected into the 

multiplication region at 𝑥 =  0.  After traveling a random distance (in the x-direction), called the electron free-

path distance, the electron impact ionizes resulting in a secondary electron and a hole. Upon ionization, the 

regenerated parent electron and the offspring electron continue to travel and may initiate further impact 

ionizations independently of each other. The offspring hole, on the other hand, travels in the ─𝑥 −direction and 

impact ionizes after traveling a hole random free-path distance. The hole ionization results in a secondary hole 

and an electron. These newly created carriers proceed to generate their own offsprings, and so on. This 

avalanche of ionization events continues until all carriers exit the multiplication region. In the conventional 

multiplication theory which is applicable to bulk material (or thick multiplication regions, e.g., in excess of 500 

nm), the ability of electrons and holes to effect an impact ionization is not dependent on their past history [2]. 

This assumption can be translated into a statement about the probability density function (pdf) of the carrier 

free-path distance. In particular, according to the conventional multiplication theory, the electron and hole free-

path distances, respectively denoted by 𝑋𝑒 and 𝑋ℎ, are exponentially distributed random variables with pdf’s 

given by 

𝑓𝑋𝑒
(𝑥) = 𝛼𝑒−𝑎𝑥, 𝑥 ≥ 0, (1) 

and 

𝑓𝑋ℎ
(𝑥) = 𝛽𝑒−𝛽𝑥 , 𝑥 ≥ 0. (2) 

The parameters 𝛼 and 𝛽 are the conventional ionization coefficients for the electron and Hole, respectively. (For 

example, 𝑓𝑋𝑒
(𝑥)𝑑𝑥 is the probability that an electron, created at 𝑥 =  0 impact ionizes in the interval [𝑥, 𝑥 +

 𝑑𝑥].) Although the conventional theory has been successful in characterizing the multiplication process for a 

host of experiments with conventional thick-multiplication-region APDs, it cannot predict the change in the gain-

noise characteristics in thin APDs[23-26]. A more physical model for carrier impact ionization assumes 

dependence of the ionization coefficient on the carrier’s history. This age-dependent ionization model is often 

referred to as the dead-space multiplication model [6-8], and it assumes that after each impact ionization a 

carrier must travel a sufficient distance (the so-called dead space) to gain sufficient energy that will enable it to 

cause another impact ionization. In the dead-space multiplication model, the pdf’s of the carrier free-path 

distance can be modeled by 

𝑓𝑋𝑒
(𝑥) = 𝛼𝑒−𝛼(𝑥−𝑑𝑒)𝑢, (𝑥 − 𝑑𝑒), (3) 

and 

𝑓𝑋ℎ
(𝑥) = 𝛽𝑒−𝛽(𝑥−𝑑ℎ)𝑢, (𝑥 − 𝑑ℎ), (4) 



where 𝑑𝑒 and 𝑑ℎ are the electron and hole dead spaces, respectively, and 𝑢(𝑥) is the unit step function (i.e., 

𝑢(𝑥) = 1 if 𝑥 ≥ 0 and zero otherwise). It is important to note that the ionization coefficients in the dead-space 

model are different from the coefficients appearing in (1) and (2) [28]: These nonlocalized coefficients 

correspond to enabled carriers that have traveled the dead space.1 In the theory of the statistics of the response 

time, the form of the pdf of the carrier free-path distance is arbitrary. Our approach is therefore applicable to 

both the conventional and dead-space ionization models. Furthermore, more realistic age-dependent ionization 

models for which the newly created carriers gradually attain ionization ability can also be incorporated by simply 

modifying the forms of the pdf’s of the free-path distance. The specific forms are typically obtained by means of 

Monte-Carlo simulation [26]. 

3. Statistics of The Random Response Time and Random Bandwidth 
We begin this section by defining the random response time, 𝑇, as the time measured from the instant a parent 

electron enters the multiplication region (at 𝑥 = 0) to the time when all carriers exit the multiplication region. 𝑇 

is merely the duration of the random impulse response function 𝐼(𝑡) of the APD. We adopt the traditional 

definition of bandwidth and define the buildup-limited bandwidth of the APD as 

𝐵 = 1/𝑇. (5) 

In this section, we characterize and compute the PDF 𝐹𝑇 (𝑡)  =  P{𝑇 ≤  𝑡} and use it to determine the statistics 

of the bandwidth. The mean and the variance of the random bandwidth can be readily calculated using 

〈𝐵〉 = ∫ 𝑡−1𝑓𝑇(𝑡)𝑑𝑡
∞

0
, (6) 

and 

𝜎𝐵
2 = ∫ (𝑡−1 − 〈𝐵〉)2𝑓𝑇(𝑡)𝑑

∞

0
𝑡, (7) 

where 𝑓𝑇 (𝑡) =  𝑑𝐹𝑇 (𝑡)/𝑑𝑡 is the probability density function of 𝑇. 

3.1 Recurrence Equations 
The characterization of 𝐹𝑇 (𝑡) is done by means of deriving a pair of coupled recurrence equations. To formulate 

the recurrence equations, we need to define certain intermediate random response times. Let 𝑇𝑒(𝑥) denote the 

duration of the random impulse response function when the multiplication is initiated by a single parent 

electron positioned at x in the multiplication region. Similarly, let 𝑇ℎ(𝑥) be the duration of the random impulse 

response function when the multiplication is initiated by a single parent hole positioned at x. Note that 𝑇𝑒(0) is 

simply the random response time 𝑇. 

The rationale behind our recurrence approach is the fundamental fact that once a parent carrier impact ionizes, 

the regenerated parent carrier and the offspring carriers independently repeat a similar process as their parent. 

For example, suppose that the avalanche process is initiated by a single parent electron at position 𝑥 and that 

the first impact ionization of this parent electron occurs at position 𝑥 +  𝜉 (i.e, the electron random free-path 

distance 𝑋𝑒 assumes the value 𝜉. Then, conditional on the location of the first impact ionization being 𝑥 +  𝜉 , 

the event {𝑇𝑒(𝑥) ≤  𝑡} occurs if and only if the responses corresponding to all three newly created carriers at 

position 𝑥 +  𝜉 terminate in the remaining time. This remaining time is precisely 𝑡 less the transit time of the 

electron from 𝑥 to 𝑥 +  𝜉. Since we assume that the two electrons and the hole act statistically independently of 

one another, the conditional probability of the occurrence of the event {𝑇𝑒(𝑥) ≤  𝑡} given that the first 

ionization occurs at 𝑥 +  𝜉 is the product of the probabilities that the responses due to the three carriers all 

terminate before 𝑡 –  𝜉/𝑣𝑒  where 𝑣𝑒 is the electron saturation (or drift) velocity in the multiplication region. (As 



in other models reported in the literature [18], we use the carrier drift velocity as an approximation avoiding the 

need for accounting for the stochastic nature of the carrier instantaneous velocity.)  A similar argument can be 

developed if a parent hole initiates the multiplication process. 

Keeping the above concept of regeneration of events in mind, we now derive two coupled recurrence equations 
characterizing the probability distribution functions of 𝑇ℎ(𝑥) and 𝑇𝑒(𝑥). Let 𝐹𝑒(𝑡, 𝑥) = 𝑃{𝑇𝑒(𝑥) ≤ 𝑡} and 
𝐹ℎ(𝑡, 𝑥) = P{𝑇ℎ(𝑥) ≤ 𝑡} be the PDF’s 𝑇𝑒(𝑥) of and 𝑇ℎ(𝑥), respectively. Clearly, 𝐹𝑇(𝑡) = 𝐹𝑒(𝑡, 0), since 𝑇𝑒(0) =
𝑇. First note that the probability that the parent electron (positioned at 𝑥) never ionizing is 1 − 𝑓0

𝑤−𝑥𝑓𝑋𝑒
(𝜉)𝑑𝜉. 

In this case, 𝑇 is precisely (𝑤 − 𝑥)/𝜐𝑒, and hence, 𝐹𝑒(𝑡, 𝑥) = 0 if 𝑡 < (𝑤 − 𝑥)/𝜐𝑒 and 𝐹𝑒(𝑡, 𝑥) = 1 if 𝑡 ≥ (𝑤 −
𝑥)/𝜐𝑒. Now suppose that the first ionization takes place at position 𝑥 + 𝜉, where the free-path distance 𝜉 is in 
the interval [0, 𝑤 − 𝑥]. According to the preceding regeneration concept, the conditional probability of the 
occurrence of the event {𝑇𝑒(𝑥) ≤ 𝑡} given that the first ionization occurs at 𝑥 + 𝜉, denoted by P{𝑇𝑒(𝑥) ≤
𝑡|𝑋𝑒 = 𝜉}, is given by 
 

P{𝑇𝑒(𝑥) ≤ 𝑡|𝑋𝑒 = 𝜉} = P{𝑇𝑒(𝑥 + 𝜉) ≤ 𝑡 − 𝜉/𝜐𝑒}2 ⋅ P{𝑇ℎ(𝑥 + 𝜉) ≤ 𝑡 − 𝜉/𝜐𝑒}. (8) 
 

Now by averaging the above conditional probability over all possible locations where the first ionization may 

have occurred (i.e. 𝜉 in the range 0 ≤ 𝜉 ≤ 𝑤 − 𝑥), we obtain 𝐹𝑒(𝑡, 𝑥).  Hence, for 𝑡 ≥ (𝑤 − 𝑥)/𝜐𝑒,  we obtain 

the recurrence equation 

𝐹𝑒(𝑡, 𝑥) = 1 − ∫ 𝑓𝑋𝑒
(𝜉)𝑑𝜉

𝑤−𝑥

0
+ ∫ 𝐹𝑒

2(𝑡 − 𝜉/𝜐𝑒 , 𝑥 + 𝜉)
𝑤−𝑥

0
⋅  𝐹ℎ(𝑡 − 𝜉/𝜐𝑒 , 𝑥 +

𝜉)𝑓𝑋𝑒
(𝜉)𝑑𝜉. (9) 

Similarly, we can start the avalanche multiplication with a single parent hole at x and follow a similar 

conditioning argument to obtain a recurrence equation for 𝐹ℎ(𝑡, 𝑥). In particular, for 𝑡 < 𝑥 𝜐ℎ⁄ , 𝐹ℎ(𝑡, 𝑥) =

0, and for 𝑡 ≥ 𝑥/𝜐ℎ, 

𝐹ℎ(𝑡, 𝑥) = 1 − ∫ 𝑓𝑋ℎ
(𝜉)𝑑𝜉

𝑥

0
+ ∫ 𝐹ℎ

2(𝑡 − 𝜉/𝜐ℎ, 𝑥 + 𝜉)
𝑥

0
⋅  𝐹𝑒(𝑡 − 𝜉/𝜐ℎ, 𝑥 +

𝜉)𝑓𝑋ℎ
(𝜉)𝑑𝜉. (10) 

Where 𝜐ℎ is the drift velocity of the hole in the multiplication region. 

The above recurrence equations can be cast into a standard form using normalized time and space variables. In 

particular, by replacing 𝑥 and 𝑡 by the normalized variables 𝑥/𝑤 and 𝑡/𝜏𝑒, respectively, where 𝜏𝑒 is the electron 

transit time across the multiplication region, we can recast (9) and (10): For 𝑡 < 1 − 𝑥, 𝐹𝑒(𝑡, 𝑥) = 0, and for 𝑡 ≥

1 − 𝑥, 

𝐹𝑒(𝑡, 𝑥) = 1 − ∫ 𝑓𝑋𝑒
(𝜉)𝑑𝜉

1−𝑥

0
+ ∫ 𝐹𝑒

2(𝑡 − 𝜉, 𝑥 + 𝜉)
1−𝑥

0
⋅  𝐹ℎ(𝑡 − 𝜉, 𝑥 + 𝜉)𝑓𝑋𝑒

(𝜉)𝑑𝜉. 

(11) 

Similarly, for 𝑡 < 𝑥 𝜐𝑒 𝜐ℎ⁄ , 𝐹ℎ(𝑡, 𝑥) = 0, and for 𝑡 ≥ 𝑥 𝜐𝑒 𝜐ℎ⁄  

𝐹ℎ(𝑡, 𝑥) = 1 − ∫ 𝑓𝑋ℎ
(𝜉)𝑑𝜉

𝑥

0
+ ∫ 𝐹ℎ

2(𝑡 − 𝜉𝜐𝑒 𝜐ℎ⁄ , 𝑥 + 𝜉)
𝑥

0
⋅  𝐹𝑒(𝑡 − 𝜉𝜐𝑒 𝜐ℎ⁄ , 𝑥 +

𝜉)𝑓𝑋ℎ
(𝜉)𝑑𝜉. (12) 

Note that the new dimensionless variable 𝑥 takes values in the interval [0,1] and the scaled density functions of 

the carrier free path are given by 



𝑓𝑋𝑒
(𝑥) = 𝑤𝑓𝑋𝑒

(𝑤𝑥) (13) 

and 

𝑓𝑋ℎ
(𝑥) = 𝑤𝑓𝑋ℎ

(𝑤𝑥). (14) 

The device parameters in these equations are now all conveniently normalized and they are: the electron and 

hole ionization parameters 𝛼𝑤 and 𝛽𝑤, respectively, the relative electron and hole dead spaces 𝑑𝑒/𝑤 and 

𝑑ℎ/𝑤, respectively, and the ratio of the electron to hole drift velocities 𝜐𝑒 𝜐ℎ⁄ . 

3.2 Numerical Solution of the Recurrence Equations 
Equations (11) and (12) can be solved numerically using the simple iterative method described below. We first 

select a maximum limit 𝑅 for the range of the normalized time to be consid- ered. We then select a mesh size for 

the normalized time and the normalized space 𝑥 allowing the discretization of the functions 𝐹𝑒 and 𝐹ℎ, and 

hence, converting the integrals into sum- mations. We set the zeroth iteration of the functions 𝐹𝑒(𝑡, 𝑥) and 

𝐹ℎ(𝑡, 𝑥), denoted, respectively, by 𝐹𝑒0(𝑡, 𝑥) and 𝐹ℎ0(𝑡, 𝑥), to zero for 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑡 ≤ 𝑅. The first 

iterates, 𝐹𝑒1(𝑡, 𝑥) and 𝐹ℎ1(𝑡, 𝑥), are computed by substituting the zeroth iterates into the right-hand side of (11) 

and (12). Similarly, the second iterates, 𝐹𝑒2(𝑡, 𝑥) and 𝐹ℎ2(𝑡, 𝑥),  are, respectively, computed from the first 

iterates by substituting 𝐹𝑒1(𝑡, 𝑥) and 𝐹ℎ1(𝑡, 𝑥),  into the right-hand side of (11) and (12) and carrying out the 

summations. Subsequent iterates are generated in the same way. This procedure is continued until the 

maximum, over the range of values of 𝑥 and 𝑡, of the relative change in the functions 𝐹𝑒𝑛(𝑡, 𝑥) and 𝐹ℎ𝑛(𝑡, 𝑥),  is 

below a predefined tolerance level. A number of specific examples of this procedure are considered in Section 

IV. 

The above numerical technique can become computationally intensive if the range 𝑅 is large (e.g., in excess of 

100). Accurately calculating the statistics of 𝑇 and 𝐵, however, may require knowledge of 𝐹𝑇(𝑡) far beyond 𝑡 =

100 in cases when the response time is large (e.g., in GaInAs where the ionization ratio is nearly 0.5). 

Fortunately, the asymptotic behavior of 𝐹𝑇(𝑡) can be analytically represented by an exponential model which 

can be extracted from (11) and (12), thus avoiding the need for considering large values of 𝑅. 

3.3 Analytical Approximation of the Tail of the Probability Distribution Function of the 

Random Response Time 
For brevity, we will consider the case when dead space is ignored. We also make the simplifying assumption that 

the electron and hole drift velocities are equal. The more general cases which may include dead space and/or 

more physical assumption on the drift velocities can be addressed in a similar way. We begin by proposing that 

for sufficiently large 𝑡, 

𝐹𝑒(𝑡, 𝜉) ≈ 1 − 𝐴(𝜉)𝑒−𝛾𝑡  (15) 

and 

𝐹ℎ(𝑡, 𝜉) ≈ 1 − 𝐵(𝜉)𝑒−𝛾𝑡  (16) 

where 𝐴(𝜉) and 𝐵(𝜉) are spatial functions to be determined later, and 𝛾 is an exponential temporal rate. Note 

that 𝛾 is also the exponential decay rate of the pdf 𝑓𝑇(𝑡). It is shown in the Appendix that the decay rate is the 

solution to the nonlinear equation 

(𝑟2(𝛾) + 𝛼 + 𝛾)𝑒𝑟1(𝛾) + (𝑟1(𝛾) + 𝛼 + 𝛾)𝑒𝑟2(𝛾) = 0 (17) 

Where 𝑟1(𝛾) and 𝑟2(𝛾) are the roots of the equation 



𝑟2 + 𝑟(𝛼 + 𝛽) − 𝛾(𝛼 + 𝛽 + 𝛾) = 0. (18) 

The solution to the nonlinear equation (17) can be easily generated by means of standard numerical recipes. In 

Section IV, we use the MATLAB function fzeros to solve (17). In practice, for a given set of device parameters, the 

tail of the density function 𝑓𝑇 can be estimated as follows: First, the exponential decay is determined using (17) 

and (18). Then, the model 𝐴(0)𝑒−𝛾𝑡 is fitted to the tail of 𝑓𝑇 and 𝐴(0) is determined. 

4. Discussion 
In this section we apply the theory of Section III to characterize the behavior of the mean and standard deviation 

of 𝐵. For simplicity, we will assume that holes and electrons have equal velocities in the multiplication region. 

Furthermore, we will present the results considering only the conventional mul- tiplication model for which the 

carrier free path densities are given by (1) and (2). The recurrence equations (11) and (12) are solved numerically 

using various device parameters and the probability distribution function 𝐹𝑇(𝑡) is computed. Fractional time and 

distance of magnitudes 10−3 and 5 × 10−3, respectively, are used to define the mesh size for the recurrence 

equations (11) and (12). Three cases of the hole-to-electron ionization ratio 𝑘 are considered (𝑘 = 0.1, 0.5, and 

1.0) representing a range of devices with almost single-carrier multiplication to strongly double-carrier-

multiplication characteristics. For each case of 𝑘, the electron ionization parameter 𝛼𝑤 is selected so 

 
Fig. 1. Probability distribution function of the random response time as a function of the normalized time 𝑡/𝜏𝑒, 

where 𝜏𝑒 is the electron transit time across the multiplication region. The APD mean gain is 40. Three values for 

the hole-to-electron ionization coefficient ratio 𝑘 are considered: 𝑘 =  0.1, 0.5, and 1.0. 



 
Fig. 2. Probability density function of the random response time as a function of the normalized time 𝑡/𝜏𝑒, 

where 𝜏𝑒 is the electron transit time across the multiplication region for the same device parameters used in Fig. 

1. Note the exponential decay of the tail. 

that the mean gain is 40, according to the well-known McIntyre formula for the APD gain [1], [2]. Fig. 1 depicts 

the behavior of 𝐹𝑇 as a function of the normalized time 𝑡/𝜏𝑒. Each curve required approximately 25 min to 

generate using a 66 MHz SUN workstation. The probability density function 𝑓𝑇 is obtained from 𝐹𝑇 by simply 

taking the derivative (numerically), as shown in Fig. 2. The predicted exponential tail (e.g., when 𝑡/𝜏𝑒 is 

approximately in excess of five in the examples considered) is clear. The impulse in 𝑓𝑇 (or jump in 𝐹𝑇) at 𝑡 𝜏𝑒⁄ =

1 is due to the possibility that the initial parent carrier undergoes no impact ionizations, in which case 𝑇 is 

exactly 𝜏𝑒. The impulse area (or jump size in 𝐹𝑇) is therefore precisely the probability that the parent electron 

does not impact ionize and it is simply 

 

 



 
Fig. 3. A comparison between the predicted analytical exponential decay rate and the numerically 

calculated decay rate using the recurrence equation. Three values for the APD mean gain are 

considered: 〈𝐺〉 = 10, 20, and 40 

equal to 𝑒−𝛼𝑤. The fact that 𝑓𝑇 decays to zero (as 𝑡 increases) more slowly as 𝑘 increases is indicative of the 

longer buildup time associated with the increase in 𝑘. 

By computing and plotting the mean and the variance of 𝑇 as a function of the ionization coefficient ratio 𝑘, it 

has been observed that both quantities increase with the increase in 𝑘. This behavior is expected from the 

physical fact that for two electron-initiated devices (fabricated from different materials) with the same mean 

gain and multiplication-region widths, more holes impact ionize (on average) in the device with the higher 𝑘 

than that of the lower 𝑘. As a result, a greater portion of the total ionizations are due to secondary impact 

ionizations leading to a longer response time. The analytical approximation of the exponential decay rate of 

𝑓𝑇(𝑡) (see Section III-C) were particularly valuable in the calculations since it allowed breaking up the integrals 

corresponding to 〈𝑇〉 and 〈𝑇2〉 into two parts: one part extending over the range of values of 𝑇 below the 

maximum normalized time , and the other part extending beyond 𝑅 and involving the predicted exponential 

expression for 𝑓𝑇. 

In order to verify the validity of the analytical asymptotic exponential expression for 𝑓𝑇, we compared the 

predicted exponential decay rate obtained using (17) with the decay rate calculated from Fig. 2. Fig. 3 shows the 

predicted and the numerically computed rates as functions of the ionization coefficient ratio 𝑘 with the APD 

mean gain 〈𝐺〉 used as a parameter. The agreement between the two rates is generally good, especially when 

the mean gain is low to moderate (i.e., 〈𝐺〉 = 10 and 20). This error, however, increases as the the mean gain 

increases (e.g., 〈𝐺〉 = 40) or when 𝑘 is high (i.e., in excess of 0.5). The reason for this behavior for such cases of 

high gain is that since the avalanche buildup time is high, a longer range of time in the numerical calculations of 

the recurrence equations is needed before the analytical asymptotic rates are achieved. 

We now turn to computing the mean and the standard deviation of 𝐵. Observe that due to the normalization of 

𝑇 by the electron transit time 𝜏𝑒, the bandwidth is also normalized: The normalized bandwidth 𝐵 is the fraction 

of the electron-transit-time-limited bandwidth, 𝐵max, defined by 𝐵max = 𝜏𝑒
−1. Note that 𝐵max is the absolute 

maximum bandwidth possible and it is achieved only when no impact ionizations take place. The dependence of 



mean bandwidth 〈𝐵〉 on the APD mean gain 〈𝐺〉 is shown in Fig. 4. As expected, the reduction in the bandwidth 

is evident as the mean gain increases. We have observed, however, that for a fixed gain, an increase in 𝑘 does 

not necessarily yield a higher mean bandwidth. This result seems, at a first glance, to be at odds with the fact 

that the mean response time 〈𝑇〉 increases with the increase in 𝑘. This apparent paradox can be explained as 

follows. For a fixed gain, an increase in 𝑘 must be accompanied by a reduction in the product 𝛼𝑤, which in turn, 

increases the likelihood of the event that the parent electron never impact ionizes (recall that the probability of 

this event is 𝑒−𝛼𝑤). When such an event occurs, the resulting gain is unity and the corresponding response time 

is equal to the electron transit time across the multiplication region. It turns out that as far as the computation 

of the mean bandwidth is concerned, the effect of increased secondary ionizations (which is due to an increase 

in 𝑘) is overcompensated by the increase in the likelihood of the short response time corresponding to unity 

gain realizations. It is important to note, however, that the effect of this increase in the mean bandwidth is not 

expected to be very significant on the statistics of the gain-bandwidth product since such realizations with high 

bandwidth are accompanied with a relatively low gain value. 

 
Fig. 4. Dependence of the mean bandwidth on the mean gain for a device with an ionization coefficient ratio of 

𝑘 = 0 5. Dashed lines represent the single standard deviation upper and lower limits. 

Fluctuation in the bandwidth relative to the mean bandwidth is shown in Fig. 5, where the ratio between the 

standard deviation of the bandwidth and the mean bandwidth, 𝜎𝐵/〈𝐵〉, is plotted as a function of the mean gain 

〈𝐺〉. It is seen that relative uncertainty in the bandwidth increases with the mean gain. This interesting behavior 

resembles, in essence, the gain-noise characteristics of APD’s where the excess noise factor increases with the 

increase in the mean gain. Here too, we see that the un- certainty (or noise) in the bandwidth, is dependent on 

the mean gain in a similar way. We expect this uncertainty in the band- width to play an important effect on the 

bit-error rates of high data-rate communication systems in a fashion similar to the effect that the excess noise 

factor has on the system performance. 

 

 

 



 
Fig. 5. Ratio of the standard deviation of the bandwidth to the mean bandwidth as a function of the mean gain 

for a device with an ionization coefficient ratio of 𝑘 = 0.5. Uncertainty in the bandwidth increases with the 

increase in the APD mean gain. 

5. Conclusions 
We developed a new technique that facilitates computing the statistics of the avalanche-buildup-time-limited 

bandwidth of APD’s. The method is based on certain recurrence equations that characterize the probability 

distribution function (PDF) of the random avalanche buildup time. Since uncertainty in the bandwidth affects the 

bit-error rate in high data-rate communication systems in a fashion similar to the way APD gain un- certainty 

degrades the performance, it is important to have a model that can estimate these bandwidth fluctuations. The 

standard deviation of the bandwidth relative to the mean bandwidth is seen to increase with the increase in the 

mean gain. This behavior resembles the dependence of the uncertainty in the APD gain (represented by the 

excess noise factor) on the mean gain. In comparison to the traditional methods for determining the mean and 

the standard deviation of the bandwidth, the reported technique is very efficient since the only significant 

computation is the calculation of the PDF of the random response time. This calculation is computationally 

equivalent to calculating the mean impulse response of an APD. However, once the probability distribution is 

calculated, any statistic, including the mean and standard deviation, of the random bandwidth can be calculated 

with minimal effort. In contrast to the reported technique, estimating the standard deviation of the bandwidth 

from the statistics of the impulse response function, as traditionally done, requires knowledge of 

autocorrelation function of the impulse response, a task that is computationally intensive. In fact, knowledge of 

the statistics of the random response time can be used to efficiently estimate the mean, the variance, and the 

auto-correlation function of the impulse response function. For example, a simple model for the random 

impulse response can be taken as a rectangular or triangular pulse of a duration equal to the random response 

time and with a total area equal to the APD random gain. Finally, the reported technique is readily applicable to 

the dead-space multiplication model. This gives the theory the potential to be used in determining the effect of 

dead space on the bandwidth in thin APD’s which have recently received considerable attention due to their low 

multiplication-noise characteristics. 

 



APPENDIX 

ANALYTICAL APPROXIMATION OF THE TAIL OF 𝐹𝑡(𝑡) 
We begin by substituting the forms (15) and (16) into (11) and (12), multiplying both sides by 𝑒𝛾𝑡, and taking the 

limit as 𝑡 → ∞ to obtain two integral equations involving 𝐴(𝜉), 𝐵(𝜉), and the exponential rate 𝛾: 

𝐴(𝜉) = ∫ 𝛼(2𝛼𝐴(𝜉 + 𝑠) + 𝐵(𝜉 + 𝑠))𝑒(𝛾−𝛼)𝑠𝑑𝑠
1−𝜉

0
 (19) 

and 

𝐵(𝜉) = ∫ 𝛽(2𝐵(𝜉 − 𝑠) + 𝐴(𝜉 − 𝑠))𝑒(𝛾−𝛽)𝑠𝑑𝑠.
𝑥

0
 (20) 

The integral equations (19) and (20) can be easily converted to the following differential equations [for example, 

use a change of variable 𝑢 = 𝜉 + 𝑠 in (19) and then differentiate with respect to 𝜉]: 

𝐴’(𝜉) = −𝛼(𝐴(𝜉) + 𝐵(𝜉)) − 𝛾𝐴(𝜉) (21) 

and 

𝐵’(𝜉) = −𝛽(𝐵(𝜉) + 𝐴(𝜉)) − 𝛾𝐵(𝜉). (22) 

The above linear equations assume a solutions of the form  𝐴(𝜉) = 𝑐1𝑒𝑟𝜉and 𝐵(𝜉) = 𝑑1𝑒𝑟𝜉. We can calculate 

the exponent by substituting the above forms into (21) and (22). system of self-consistency equations given by 

[
𝑟 + 𝛼 + 𝛾 𝛼

−𝛽 𝑟 − 𝛽 − 𝛾
] [

𝑐1

𝑑1
] = [

0
0

]. (23) 

The above system of linear homogeneous equations has a non- trivial solution if and only if the matrix in (23) is 

singular. By setting the determinant of this matrix to zero, we obtain a non- linear characteristic equation whose 

two zeros are values of the exponent 𝑟 which yield a solution to (21) and (22). This char- acteristic equation is 

given by (18). We now form the general solution to (21) and (22), respectively, as 

𝐴(𝜉) = 𝑐1𝑒𝑟1𝜉 + 𝑐2𝑒𝑟2𝜉  (24) 

and 

𝐵(𝜉) = 𝑑1𝑒𝑟1𝜉 + 𝑑2𝑒𝑟2𝜉  (25) 

The constants 𝑐2 and 𝑑2 can be related to 𝑐1 and 𝑑1, respectively, through the boundary conditions for 𝐴(𝜉) and 

𝐵(𝜉). In particular, using the fact that the duration of a response generated as a result of a parent electron at 

location 𝑥 = 1 is zero [i.e., 𝑇𝑒(1) = 0], it is clear that 𝐹𝑒(𝑡. 1) = 1 for all 𝑡. Similarly, since 𝑇ℎ(0) = 0, 𝐹ℎ(𝑡, 0) =

1. Using these facts in (15) and (16) yields the boundary conditions 𝐴(1) = 0 and 𝐵(0) = 0. Now by applying 

these boundary conditions in (24) and (25), we obtain 

𝑐1𝑒𝑟1 + 𝑐2𝑒𝑟2 = 0 (26) 

and 

𝑑1 + 𝑑2 = 0. (27) 



Observe that for every 𝛾 > 0, we can find the zeros of (18) and obtain the exponents 𝑟1(𝛾) and 𝑟2(𝛾). However, 

there is only one value of 𝛾 for which the boundary conditions (26) and (27) are satisfied. To find this special 𝛾, 

note that if we substitute (24) and (25) into (21) we obtain 

(𝑟2 + 𝛼 + 𝛾)𝑐2 + (𝑟1 + 𝛼 + 𝛾)𝑐1 = 0. (28) 

Finally, by combining (28) with (26) and (27) we arrive at the nonlinear equation given in (17). 
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