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Abstract 
Approximate analytical expressions are derived for the mean gain and the excess noise factor of 

avalanche photodiodes including the effect of dead space. The analysis is based on undertaking a 
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characteristic-equation approach to obtain an approximate analytical solution to the existing system of 

recurrence equations which characterize the statistics of the random multiplication gain. The analytical 

expressions for the excess noise factor and the mean gain are shown to be in good agreement with the 

exact results obtained from numerical solutions of the recurrence equations for values of the dead 

space reaching up to 20% of the width of the multiplication region. 

I. Introduction 
There has been an increased recent interest in avalanche photodiodes (APD's) with a thin 

multiplication region (MR) for their low avalanche multiplication noise [1, 2, 3, 4, 5, 6]. Experiments 

have shown that the excess noise factor, which is a measure of the avalanche multiplication noise, is 

reduced as the width of the MR of the device is decreased [1, 2]. This observation indicates that the 

excess noise factor is not only a function of the mean gain and the hole-to-electron ionization 

coefficient ratio but also dependent on the MR width. This dependence cannot be explained within the 

context of the conventional (McIntyre) avalanche multiplication theory [7, 8] which asserts that the 

excess noise factor is a function only of the mean gain and the ionization coefficient ratio. 

The dependence of the excess noise factor on the width of the MR has been attributed, in part, to the 

non-localized nature of the impact ionization coefficients[ 2, 4, 5, 6] which is based on the physical 

assumption that a newly generated carrier must travel a certain distance, called the dead space, in 

order to gain sufficient energy before it is capable of impact ionizing[ 9]. The dead space is primarily a 

function of the electric field and the impact ionization energy associated with the material. For an APD 

with a thin MR, the value of dead space becomes relatively high and the effect of dead space on the 

multiplication noise therefore becomes more significant. Both theoretical [9, 10, 11, 12] and Monte-

Carlo [5, 6] studies confirm that dead space results in a reduction in the excess noise factor. Spinelli et 

al [13] has recently developed an approximate expression for the mean gain by employing a small-

perturbation approach to obtain an approximate solution to the recurrence equations reported in the 

dead-space multiplication theory [10]. However, the approximation reported in [13] does not address 

the excess noise factor. 

In this letter, we develop an approximate analytical solution to the recurrence equations given in [10] 

using a technique which involves the characteristic equations corresponding to the recurrence 

equations. Approximate analytical expressions for both the mean gain and the excess noise factor are 

determined under conditions of constant ionization coefficients. To our knowledge, no prior closed-

form analytical expression for the excess noise factor has been reported for the dead-space model. Our 

results for the mean gain and the excess noise factor are in good agreement with the exact numerical 

solutions. Furthermore, the accuracy of the reported approximation of the mean gain is generally 

comparable to the perturbation approximation reported in [13]. The analysis reported in this letter has 

the potential to provide a simple alternative tool to simulation and extensive numerical methods 

traditionally used to characterize avalanche multiplication noise in thin APD's. 

II. Results and discussion 
Consider the multiplication region of a pure-electron injection APD extending from 𝑥 =  0 to 𝑥 =  𝑤, 

where 𝑤 is the width of the avalanche multiplication region.  A parent electron is injected at 𝑥 =  0 

and travels under the effect of the electric field in the x-direction.  After traveling a fixed dead space 



𝑑𝑒, the electron becomes capable of impact ionizing with an ionization coefficient 𝛼. Upon ionizing, the 

parent and secondary electrons are required to travel a minimum distance 𝑑𝑒 from the point of 

generation before they are capable of further impact ionizations.  The hole travels in the -x-direction 

and becomes capable of impact ionizing with an ionization coefficient 𝛽 only after  traveling  a  dead  

space  𝑑ℎ.   This process continues until all carriers exit the multiplication region resulting in a net 

random gain 𝐺. 

To characterize the statistics of 𝐺, the random counts 𝑍(𝑥) and 𝑌 (𝑥) were introduced in [10] as the 

total number of carriers generated as a result of an initial electron or hole, respectively, located at 

position x in the multiplication region. The random gain is then 𝐺 =  0.5(𝑍(0)  +  𝑌 (0)), which can be 

further reduced to 𝐺 =  0.5(𝑍(0)  +  1), since 𝑌 (0)  =  1. Clearly, if the mean, 𝑧(𝑥)  = <  𝑍(𝑥)  >, 

and the second moment, 𝑧2(𝑥)  = <  𝑍2(𝑥)  >, are determined then the mean gain and excess noise 

factor can be computed as <  𝐺 > =  0.5(𝑧(0)  +  1) and 

𝐹 =
〈𝐺2〉

〈𝐺〉2
=

1

4〈𝐺〉2
(𝑧2(0) + 4〈𝐺〉 − 1), 

where z(𝑥), y(x), 𝑧2(𝑥), 𝑦2(𝑥) obey the following differential equations (differential forms of the 

recurrence equations (14), (15), (18), and (19) in [10]). For 0 <  𝑥 <  𝑤 −  𝑑𝑒, 

𝑧’ (𝑥)  −  𝑎 𝑧(𝑥)  −   𝑧(𝑥 +  𝑑𝑒)  −  𝑦(𝑥 +  𝑑𝑒)]  =  0, (1)  

𝑧2
′ (𝑥) −  𝛼 𝑧2(𝑥) − 2𝑧2 (𝑥 +  𝑑𝑒)  −  𝑦2(𝑥 +  𝑑𝑒)]  

=  −2𝛼𝑧(𝑥 +  𝑑𝑒)  2𝑦(𝑥 +  𝑑𝑒) +  𝑧(𝑥 +  𝑑𝑒), (2) 

and for 𝑑ℎ  <  𝑥 <  𝑤, 

𝑦′(𝑥) +  𝛽[𝑦(𝑥)  −  2𝑦(𝑥 −  𝑑ℎ)  −  𝑧(𝑥 −  𝑑ℎ)] =  0, (3) 

𝑦2
′ (𝑥) +  𝛽[𝑦2(𝑥)  −  2𝑦2 (𝑥 −  𝑑ℎ)  −  𝑧2 (𝑥 −  𝑑ℎ)]  

= 2𝛽𝑦(𝑥 −  𝑑ℎ) (2𝑧(𝑥 −  𝑑ℎ) +  𝑦(𝑥 −  𝑑ℎ)),       (4) 

with the boundary conditions 𝑧(𝑥)  =  𝑧2(𝑥)  =  1, if 𝑤 −  𝑑𝑒  <  𝑥 <  𝑤, and 𝑦(𝑥)  =  𝑦2(𝑥)  =  1, if 

0 <  𝑥 <  𝑑ℎ. The approach we undertake to approximately solve for 𝑧(𝑥) and 𝑦(𝑥) is based on 

proposing exponential solutions. The desired exponents are then found by substituting these assumed 

exponential forms in (1) and (3), and obtaining an algebraic characteristic equation characterizing the 

exponent that results in self consistency in (1) and (3). (This approach is similar to the standard method 

used to derive the solution of linear differential equations with constant coefficients where the self 

consistency of the proposed exponential solution is represented by a polynomial characteristic 

equation whose roots are the desired exponents.) Specifically, assume a solution of the form 𝑧(𝑥)  =

 𝑐1𝑒𝑟𝑥 and 𝑦(𝑥)  =  𝑐2𝑒𝑟𝑥, and substitute these forms into (1) and cancel out all the terms that involve 

𝑥 to yield a linear equation in 𝑐1 and 𝑐2 involving the unknown parameter r. We now follow the same 

procedure using (3) in place of (1), and obtain another equation involving 𝑐1 and 𝑐2. These two 

equations can be written as 



 

[
𝑟 − 𝛼 + 2𝑎𝑒𝑟𝑑𝑒 𝛼𝑒𝑟𝑑𝑒

−𝛽𝑒−𝑟𝑑ℎ 𝑟 + 𝛽 − 2𝛽𝑒−𝑟𝑑ℎ
] [

𝑐1

𝑐2
] = [

0
0

] . (5) 

For a non-trivial solution to 𝑐1 and 𝑐2 in (5), we require that the matrix above is singular (its 

determinant must be zero) which results in the nonlinear characteristic equation characterizing 𝑟: 

(𝑟 −  𝛼 +  2𝛼𝑒𝑟𝑑𝑒  )(𝑟 +  𝛽 − 2𝛽𝑒−𝑟𝑑ℎ) +  𝛼𝛽𝑒𝑟(𝑑𝑒−𝑑ℎ) = 0.  (6) 

For brevity, we consider the case when the electron and hole ionizations are unequal in which case (6) 

has two roots: 𝑟1  =  0 and 𝑟2  =  𝑟 ≠  0. (The exponent 𝑟 is computed using MATLAB and its built- in 

function fzero.) Now by setting 𝑧(𝑥) and 𝑦(𝑥) to a linear combination of the two exponentials 

(corresponding to the two roots) and applying the boundary conditions 𝑧(𝑤 −  𝑑𝑒)  =  𝑦(𝑑ℎ)  =  1, 

we can solve for 𝑧(𝑥) and 𝑦(𝑥) and obtain 

〈𝐺〉 =
𝜌 + 𝑒𝑟𝑑ℎ

𝜌𝑒𝑟(𝑤−𝑑𝑒) + 𝑒𝑟𝑑ℎ
, where 𝜌 = −𝑎𝑒𝑟𝑑𝑒/(𝑟 − 𝛼 + 2𝛼𝑒𝑟𝑑𝑒). (7) 

To find an approximate solution to (2) and (4), first note that the right-hand side of (2) and (4) is 

explicitly determined by substituting the previously calculated approximate expressions for 𝑧(𝑥) and 

𝑦(𝑥), and it consists of a constant plus a weighted sum of the terms 𝑒𝑟𝑥 and 𝑒2𝑟𝑥. We can therefore 

assume a solution (a combination of the homogeneous and particular solutions) to the unknown 

functions 𝑧2(𝑥) and 𝑦2(𝑥) as the superposition of terms of the form 𝑧2(𝑥)  =  𝑝1𝑒𝑟𝑥 + 𝑝2𝑒2𝑟𝑥 +

 𝑝3𝑥𝑒𝑟𝑥  + 𝑝4𝑥 +  𝑝5 and 𝑦2(𝑥)  =  𝑞1𝑒𝑟𝑥  +  𝑞2𝑒2𝑟𝑥  + 𝑞3𝑥𝑒𝑟𝑥  +  𝑞4𝑥 +  𝑞5. The exponent 𝑟 turns 

out to satisfy the same characteristic equation as in (6). Upon substituting the proposed forms (with 

known 𝑟 but unknown coefficients) into (2) and (4), and applying the conditions 𝑧2(𝑤 −  𝑑𝑒)  =

 𝑦2(𝑑ℎ)  =  1, we obtain a system of ten linear equations involving the ten unknown coefficients 

𝑝1, . . . ,  𝑝5, and 𝑞1, . . . , 𝑞5. After some algebra, the unknown coefficients are determined and the final 

expression for the excess noise factor is found to be 

𝐹 =
1

4〈𝐺〉2
(𝑤1 + 𝑤3 + 𝑤5 + 4〈𝐺〉 − 1), (8) 

where the parameters 𝑤1, 𝑤3, and 𝑤5, are obtained by solving the linear system of equations 𝐪 =  𝐏𝐯, 

where 𝐪 =   [1, 1, 𝑏1,  𝑏2, 0,  𝑏3, 𝑎1, 𝑎2, 𝑎3]𝑇 , 𝐯 =   [𝑤1, . . . , 𝑤9]𝑇 .  The nonzero entries of the 9 ×  9 

matrix 𝐏 and the vector 𝐪 are (𝑝𝑖𝑗 refers to the ith row and the 𝑗th column): 

  



 

𝑝11 = 𝑝26 = 1, 𝑝12 = 𝑤 − 𝑑𝑒 , 𝑝13 = 𝑒𝑟(𝑤−𝑑𝑒), 𝑝14 = (𝑤 − 𝑑𝑒)𝑒𝑟(𝑤−𝑑𝑒), 

𝑝15 = 𝑒2𝑟(𝑤−𝑑𝑒), 𝑝22 = −𝑑ℎ , 𝑝27 = 𝑒𝑟𝑑ℎ , 𝑝28 = 𝑑ℎ𝑒𝑟𝑑ℎ , 

𝑝29 = 𝑒2𝑟𝑑ℎ , 𝑝31 = 𝑝36 = 𝛼, 𝑝32 = 1 + 𝛼𝑑𝑒 , 𝑝43 = 𝑝54 = 𝑟 − 𝛼 + 2𝑎𝑒2𝑟𝑑𝑒 , 
𝑝44 = 1 + 2𝛼𝑑𝑒𝑒𝑟𝑑𝑒 , 𝑝47 = 𝑝58 = 𝛼𝑒𝑟𝑑𝑒 , 𝑝48 = 𝛼𝑑𝑒𝑒𝑟𝑑𝑒 , 𝑝65 = 2𝑟 − 𝛼 + 2𝛼𝑒2𝑟𝑑𝑒 , 
𝑝69 = 𝛼𝑒2𝑟𝑑𝑒 , 𝑝71 = 𝑝76 = −𝛽 𝑝72 = −(1 + 𝛽𝑑ℎ), 𝑝83 = −𝛽𝑒−𝑟𝑑ℎ , 
𝑝88 = 1 + 2𝛽𝑑ℎ𝑒−𝑟𝑑ℎ , 𝑝87 = 𝑟 + 𝛽 − 2𝛽𝑒−𝑟𝑑ℎ , 𝑝84 = 𝛽𝑑ℎ𝑒−𝑟𝑑ℎ , 𝑝95 = −𝛽𝑒−2𝑟𝑑ℎ , 
𝑝99 = 2𝑟 + 𝛽 − 2𝛽𝑒−2𝑟𝑑ℎ , 𝑏1 = 2𝛼𝛾2

2, 𝑏2 = 4𝛼𝑝𝑦1𝑦2𝑒𝑟𝑑𝑒 , 𝑏3 = −2𝛼𝑝(𝑝 + 2)𝑦1
2𝑒2𝑟𝑑𝑒 , 

𝛼1 = −2𝛽𝛾2
2 , 𝛼2 = 4𝛽𝑝𝛾1𝛾2𝑒−𝑟𝑑ℎ , 𝛼3 = 2𝛽(2𝑝 + 1)𝑦1

2𝑒2−𝑟𝑑ℎ ,  

 

  



where 𝛾1 = 2/(𝑝𝑒𝑟(𝑤−𝑑𝑒) + 𝑒𝑟𝑑ℎ), and 𝛾2 = 1 − 𝛾1𝑒𝑟𝑑ℎ.  Equation (8) is the main contribution of this 

letter. To our knowledge, this is the first time that an analytical expression for the excess noise factor 

for the dead-space multiplication model is reported. 

We now compare our characteristic-equation method (CM) approximations for the mean and the 

excess noise factor (Equations (7) and (8)) to the exact numerical method (ENM) reported in [10]. We 

also compare our expression for the mean gain to the perturbation-method (PM) approximation 

reported in [13].  For simplicity, we assume that the electron and hole dead spaces are equal with a 

common value d. It is seen from Fig. (1) that both the CM and PM approximations are accurate for the 

"small" dead space case of 𝑑/𝑤 =  0.05. In the case of 𝑘 =  0.1 and 𝑑/𝑤 =  0.1, the CM 

approximation outperforms the PM approximation. The main contribution of this letter is summarized 

in Fig. (2). It is seen that the CM approximation of the excess noise factor, as a function of the mean 

gain, is in good agreement with the exact results obtained using the ENM method. Even in the case 

when 𝑑/𝑤 =  0.2, the CM approximation performs well in capturing the dead space effect which can 

be seen by comparing the CM graph to the graph from the conventional theory (CON) reported in [7] 

for which 𝑑/𝑤 =  0. 

In summary, we have developed approximate expressions for the mean gain and the excess noise 

factor of APD's in a dead-space model which are in good agreement with the exact results obtained 

using extensive numerical solutions. These approximations provide a valuable tool for designing APD's 

with thin multiplication regions which are known to be sensitive to the dead space effect. 
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Figure Captions 

 

Fig.(1) The dependence of the mean gain < G > on the electron ionization parameter aw. Solid lines represent 

the characteristic-equation method (CM) approximation, dashed-dotted lines rep- resent the perturbation-

method (PM) approximation and the dashed lines correspond to the exact numerical method (ENM). Two cases 

for the hole-electron ionization coefficient ratio k and two cases for the relative dead space parameter d/w are 

considered: 𝑘 =  0.1 and 𝑘 =  0.5; 𝑑/𝑤 =  0.05 and 𝑑/𝑤 =  0.1. 



 

Fig. (2) The excess-noise factor F as a function of the mean gain <  𝐺 >. Solid lines represent the characteristic-

equation method (CM) approximation and the dashed lines correspond to the exact numerical method (ENM). 

Three cases for the hole-electron ionization coefficient ratio k and three cases for the relative dead space d/w 

are considered: 𝑘 =  0.1, 𝑘 =  0.5, and 𝑘 =  0.9; 𝑑/𝑤 =  0.1, 𝑑/𝑤 =  0.15, and 𝑑/𝑤 =  0.2. For comparison, 

the F vs. <  𝐺 > characteristics for the case 𝑑/𝑤 =  0 are plotted according to the conventional theory (CON) 

and represented by a dashed-dotted line. 
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