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Abstract 
The accuracy of optical measurements at low light levels is limited by the quantum noise of the source and by 

the random nature of the interaction with the measured object. The source noise may be reduced by use of 
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nonclassical photon-number squeezed light. This paper considers the use of two photon-correlated beams 

(generated, for example, by spontaneous parametric downconversion) to measure the optical transmittance of 

an object. The photons of each beam obey a random Poisson process, but are synchronized in time. One beam is 

used to probe the object while the other is used as a reference providing information on the realization of the 

random arrival of photons at the object. The additional information available by such measurement may be 

exploited to improve the accuracy of the measurement. Various estimators, including the maximum likelihood 

estimator, are considered and their performance is evaluated and compared with the measurement based on 

single-beam conventional (Poisson) source and maximally squeezed (fixed photon number) source. The 

performance advantage established in this paper depends on parameters such as the intensity of the source, the 

transmittance of the object, the quantum efficiency of the detectors, the background noise, and the degree of 

correlation of the photon numbers in the two beams. 

1. Introduction 

The accuracy of optical measurements is ultimately limited by the quantum nature of light, which dominates at 

low light levels when the number of photons per spatial and temporal resolution elements is small. 1-4 The 

uncertainty of the measurement is caused by the random fluctuations of the probing optical beam and the 

random nature of the process of interaction with the probed object. Consider for example the simple process of 

measuring the transmittance of an object using coherent light as a probe. If we think of each photon of the 

probe as a particle which is transmitted through the object with a probability equal to the transmittance, then 

the estimation of the transmittance is akin to estimating the probability of success in a repeated random 

Bernoulli experiment. However, since the photons themselves arrive at the object at random, in accordance 

with a Poisson process, an additional uncertainty is introduced. For example, if no photon is received, this could 

indicate that the photon failed to be transmitted (was absorbed by the object, for example), or that it did not 

arrive at the object in the first place. In this simple scenario there are two uncertainties: one associated with the 

random arrival of the photons at the target, and another resulting from the nature of the transmission process-a 

process of random deletion of photons. Efforts at reducing the noise in the probe beam have fueled an interest 

in generating amplitude squeezed (sub-Poisson), and quadrature squeezed light, which are forms of non-

classical light.5-8 

Another source of non-classical light that has generated considerable interest in recent years is photon-

correlated beams. Here the light source takes the form of two beams, the photons of each arrive in accordance 

with a random Poisson process, but the photons of the two beams are, under ideal conditions, perfectly 

synchronized in time and space. Photon correlated beams can be generated, for example, by spontaneous 

parametric downconversion.9-,13 This is a nonlinear process in which each of the photons of a pump interacts 

with a medium exhibiting the second-order nonlinear effect and creates a pair of photons, a twin, called the 

signal and idler. Conservation of momentum ensures that if one photon is observed in one direction, its twin 

must be present in one and only one matching direction. If the pump is in a coherent state, the statistics of the 

photons in each of the twin beams obeys a Poisson process, but the two processes are, under ideal conditions, 

completely correlated. Since the joint statistics of the photons of this light source have reduced uncertainty, this 

light source is squeezed. Photon-correlated beams have been proposed for use in a number of applications 

including optical communications, cryptography, and tests of the quantum theory of light. 14-1 9 

Photon-correlated beams may be effectively used for optical measurements, for example measurement of the 

transmittance (or reflectance) of an object. One beam, say the signal, serving as a probe, is transmitting through 

the object, and both the transmitted signal beam and the idler beam are observed. The information obtained by 

observing the idler photons provides us with a copy of the realization of the twin signal beam before its 

transmission through the object. Such information may be used to improve the accuracy of the measurement. 



Early work on this problem includes a calculation of the improvement in the accuracy of estimation using an 

approximation based on the assumption that the mean number of photons collected is large.20 This assumption 

is not applicable in situations when the illumination is weak. Since the need to enhance the accuracy of 

measurement beyond the conventional quantum-limited level often arises when the light is weak, there is need 

to develop a more general theory which establishes the conditions required for achieving an improvement in the 

estimation accuracy for various estimators of the transmittance, and including realistic non-ideal conditions such 

as the finite quantum efficiency of the detectors, the background noise, and the partially correlated nature of 

the twin beams. This is the purpose of the present paper. Although the paper is cast as a theory of estimation of 

the transmittance (or reflectance) of an object, the results are also applicable to the measurement of quantum 

efficiency of a detector, and to other radiometric measurement. 

This paper is organized as follows. In Section 2 we develop benchmarks for assessing the performance of all the 

estimates of the transmittance. The mean-square errors associated with the maximum-likelihood estimators are 

determined for a conventional single-beam setup using a conventional probe with Poisson distributed photons 

and an ideal probe with deterministic number of photons arriving at the detector in a given time interval. These 

errors represent the standard single-beam quantum-limited performance and the random- deletion-limited 

performance, respectively. In Section 3, we consider three estimators based on measurements with photon-

correlated beams and determine their associated errors. In Section 4 we examine the effect of various 

parameters on the performance improvement offered by the photon-correlated-beams measurement relative 

to the classical single-beam measurement. These parameters include the mean photon flux of the probe 

beam(s), the level of the transmittance to be estimated, the quantum efficiencies of the detectors used in the 

measurement, the level of background noise, and the degree of correlation between the photons of the twin 

beams. 

2. Single Beam Measurement 
Consider the measurement of the transmittance 𝑡 of a partially transmitting object by a conventional single-

beam setup, as illustrated in Fig. 1. The probe beam carries an average photon flux 𝜆 (photons per second), 

which is reduced to an average photon flux of 𝜆 upon transmission through the object. The transmitted beam is 

detected using a detector with quantum efficiency 𝜂 operated in the photon counting mode and subjected to 

background noise equivalent to an average rate of µ photons per second. Such noise results from stray light and 

free charges that are thermally generated in the detector. The photon countermeasures the number of counts 𝑁 

detected in a time duration 𝑇. This number is a random variable with mean value 𝜂𝑡𝜆𝑇 + 𝜂𝜇𝑇. 

The estimation problem at hand is as follows: Given the measured random variable 𝑁, and assuming that the 

parameters 𝜆, µ, and 𝜂 are known (from prior accurate measurements of the probe beam and the detector , find 

an estimate �̂� of the transmittance 𝑡. This estimate is of course a function of the measurement 𝑁, and this 

dependence will be explicitly denoted by �̂�(𝑁) whenever necessary. We also assume knowledge of a 

probabilistic model for the overall system which is used to determine the probability distribution 𝑃𝑁(𝑘) =

 P(𝑁 = 𝑘) of the random variable 𝑁, where P stands for probability of an event. A common measure of 

performance of the estimator is the mean square error defined by 

𝜖2 = E[(�̂� − 𝑡)2] = ∑[�̂�(𝑘) − 𝑡]2𝑃𝑁(𝑘)

∞

𝑘=0

. (1)  

This error is of course dependent on the chosen estimator �̂� and on the probability distribution 𝑃𝑁(𝑘). 



The simplest estimator is based on equating the measured random variable 𝑁 with its expected value, i.e., 𝑁 =

𝑛𝑡𝜆𝑇 + 𝜂𝜇𝑇, or �̂� = (𝑁 − 𝜂𝜇𝑇)/𝜂𝜆𝑇. This estimator is generally not an optimal estimator, and it does not make 

use of the knowledge of the probability distribution of the measurement 𝑁. We shall consider instead the 

maximum-likelihood (ML estimator. For a given detected count 𝑁 = 𝑘, the ML estimator �̂�ML is the value of 

𝑡 that maximizes the probability distribution function of the detected count 𝑁 evaluated at 𝑘. ML estimators are 

widely used in signal detection and estimation.21 

To determine the probability distribution 𝑃𝑁(𝑘) we consider the physical model in Fig. 1. Let 𝑁𝑠 represent the 

random number of photons in the probe beam in the counting time 𝑇. Upon transmission through the object 

and detection by the detector, these photons generate a random number of counts 𝑁𝑑𝑠 in the counter.  If 𝑁𝑛 is 

the random number of background counts, then  𝑁  =  𝑁𝑑𝑠   +  𝑁𝑛.  The random number  𝑁𝑑𝑠   is a deleted 

version of the random number  𝑁𝑠   where every count of  𝑁𝑠  survives  with probability 𝜂𝑡.   The expected 

values of these random variables are E (𝑁𝑠)  = 𝜆𝑇,  E (𝑁𝑑𝑠) = 𝜂𝑡𝜆𝑇,  and  E 𝑁𝑛   = 𝜂𝜇𝑇.   In order to determine 

the probability distribution of 𝑁, we need to specify the statistics of 𝑁𝑠 and 𝑁𝑛. We shall consider two special 

cases for the statistics of the probe beam photocounts 𝑁𝑠. 

1. 𝑁𝑠 is a fixed deterministic number (corresponding to maximum photon-number squeezing), and 

1. 𝑁𝑠   has  a  Poisson  distribution (corresponding  to  coherent  or  classical light).  In this case 𝑃𝑁𝑠(𝑘) =

𝑃(𝜂𝜆 𝑘),  where  𝑃 (𝛿;  𝑘)   =   exp(−𝛿)𝛿𝑘/𝑘!  is  the  Poisson  probability  distribution function with 

mean 𝛿. 

As for the statistics of the background counts 𝑁𝑛 we shall assume that it obeys the Poisson statistics, i.e., 

𝑃𝑁𝑛  (𝑘)   =   𝑃 (𝜂𝜆𝑇 ;  𝑘). Our experience, however, indicates that the exact statistics of the background noise is 

not critical to cases of interest to us here when the mean value of the background count is low. 

A. Probe Beam with Fixed Number of Photons 
In ideal antibunched light,6 the photon stream is maximally regularized and the number of photons arriving at 

the detector in any time interval is deterministic. This situation corresponds to light in a maximum photon-

number squeezed state. In this case, the probability distribution function of the number of photons arriving at 

the detector in 𝑇 units of time in the probe beam is given by 

𝑃𝑁𝑠  (𝑘) =  𝛿(𝑘 − 𝑛), (2) 

where 𝛿(𝑘)  =  1 if 𝑘 =  0, and 𝛿(𝑘)  =  0 otherwise. In general, the Mandel parameter,22 which is a measure 

of uncertainty in the photon count, is defined as 

𝑄(0)  =
𝐸[(𝑁𝑠 − 𝑁𝑠)

2]

𝑁𝑠
− 1, (3) 

(where �̅�𝑠  is the mean of 𝑁𝑠), and it assumes a minimum value of -1 in the case of maximally photon-number 

squeezed light.  Clearly, uncertainty in transmittance estimation with a direct detection scheme will be at its 

minimum for this maximally photon-number squeezed state. Each photon is transmitted through the object with 

probability 𝑡. The combined effect of transmission and detection process on the probe beam photons can be 

thought of as a random deletion process for which the probability that a photon is transmitted and detected is 

𝜂𝑡.  Thus, the number of detected photons 𝑁𝑑𝑠  is a binomial random variable (a sum of 𝑛 independent binary 

random variables) whose probability distribution function is given by 

𝑃𝑁𝑑𝑠  (𝑘) =  𝐵(𝑛, 𝜂𝑡;  𝑘), (4) 



where 

𝐵(𝑛, 𝜂𝑡;  𝑘)  =  (
𝑛

𝑘
) (𝜂𝑡)𝑘(1 − 𝜂𝑡)𝑛−𝑘(5)  

is a binomial probability distribution function with parameters 𝑛 and 𝜂𝑡. Using the fact that 𝑁𝑑𝑠 and 𝑁𝑛 are 

statistically independent, the probability distribution of the detected count 𝑁 is given by the discrete 

convolution23 

𝑃𝑁(𝑘) = ∑ 𝐵(𝑛, 𝜂𝑡, 𝑖)𝑃(𝜂𝜇𝑇; 𝑘 − 𝑖).

min(𝑛,𝑘)

𝑖=0

(6) 

The maximum likelihood estimator �̂�F,ML, for a given count observation 𝑘,  is  the value of 𝑡 that maximizes (6). It 

can be shown that this maximizer is the solution, in the interval [0,1], of the following equation: 

d
d𝑡
𝑃𝑁(𝑘) = ∑

𝑖
𝑡
−
𝜂(𝑛− 𝑖)
1−𝑡𝜂

min(𝑛,𝑘)

𝑖=0

×𝐵(𝑛,𝑡𝜂, 𝑖)𝑃(𝜂𝜇𝑇;𝑘− 𝑖) = 0. (7)  

If such a solution does not exist, then �̂�F,ML is set to the appropriate end point (zero or one). In Section 4, the 

above equation is solved numerically to obtain �̂�F,ML. 

The error in the transmittance estimation, ϵF,ML
2 , is evaluated using (1) and (6), and the numerically computed 

ML estimator �̂�F,ML given by (7).  This error represents the random-deletion-limited performance in the single-

beam case.  This error is used hereafter as a benchmark for comparison with results based on photon-correlated 

beams. 

B. Probe Beam with Poissonian Photon Number 
In the case of a probe beam with Poissonian photon statistics, the probability distribution function of the 

number of detected photons 𝑁𝑑𝑠 is Poissonian with rate 𝜂𝑡𝜆. Furthermore, since the overall count 𝑁 is an 

independent sum of two Poisson random variables, it is too a Poisson random variable. The probability 

distribution function of 𝑁 is therefore 

𝑃𝑁(𝑘)  =  𝑃 (𝜂𝑡𝜆𝑇 +  𝜂𝜇𝑇;  𝑘). (8) 

(In this case the Mandel parameter 𝑄(0)   =   0.)   By maximizing (8) over 𝑡, the maximum likelihood estimator 

�̂�P,ML  can be explicitly determined in terms of the number of observed counts 𝑁: 

�̂�P,ML =

{
  
 

  
 0 if 

𝑁

𝜂𝜆𝑇
≤
𝜇

𝜆

1 if 
𝑁

𝜂𝜆𝑇
≥ 1 +

𝜇

𝜆
𝑁

𝜂𝜆𝑇
−
𝜇

𝜆
otherwise

  . (9) 



The hard limiting which appears in (9) plays a role only in situations when the photon count is low. The effect of 

this hard limiting may be neglected otherwise. 

The mean-square error ϵP,ML
2 in this case can be numerically calculated using (9), (8), and (1). When the mean 

photon count (𝜂𝑡𝜆 +  𝜂𝜇)𝑇 is sufficiently high to warrant neglecting the hard-limiting effect in the expression of 

�̂�P,ML, the error ϵP,ML
2  takes the simple form: 

𝜖𝑃,𝑀𝐿
2 =

1

𝜂𝜆𝑇
 (𝑡 +

𝜇

𝜆
) . (10)  

In the ideal case when µ = 0 and 𝜂 = 1, 𝜖P,ML
2  is the error due only to the combined effect of quantum noise 

and the random deletion of photons.  This error is due to noise associated with random deletion, represented by 

𝜖F,ML
2 , and to noise associated with photon-number fluctuation. Since a Poissonian light is the limit in photon 

fluctuation noise in the semiclassical theory, 𝜖P,ML
2  represents the standard quantum limit (SQL) of transmittance 

estimation noise. By using squeezed light sources, it is possible to reduce the transmittance noise to almost 

𝜖𝐹,ML
2  which is the lowest error in transmittance estimation using direct detection. 

3. Measurement with Photon-Correlated Beams 
In this section, we consider the problem of measuring the transmittance of an object using two photon-

correlated beams, one used as a probe (signal beam) and the other as a reference (idler beam). The estimation 

setup is shown schematically in Fig. 2. 

The signal beam passes through the partially transmitting object as in the case of the single-beam setup of 

Section 2. The second beam, the idler, does not go through the object, and is used to provide information on the 

actual number of photons 𝑁𝑠 in the signal beam. After transmission and detection with detection quantum 

efficiency 𝜂𝑠), 𝑁𝑠 is reduced to the detected number of signal photons 𝑁𝑑𝑠. The total number of counts in the 

signal channel, 𝑁𝑠𝑠, is the sum of 𝑁𝑑𝑠 and the additive background noise in the signal channel denoted by 𝑁𝑛𝑠. 

The number of photons from the idler beam, 𝑁𝑖, is in turn reduced after detection in a photon counter with 

quantum efficiency 𝜂𝑖  to 𝑁𝑑𝑖. The total number of counts in the idler channel, 𝑁𝑖𝑖, is the sum of 𝑁𝑑𝑖  and the 

background noise in the idler channel, 𝑁𝑛𝑖. A transmittance estimator �̂�, in the photon-correlated light setup, is a 

function of both 𝑁𝑠𝑠 and 𝑁𝑖𝑖. As in Section 2, we assume that the additive independent background noise 

photon counts 𝑁𝑛𝑠 and 𝑁𝑛𝑖 are Poissonian with means 𝜂𝑠µ𝑠𝑇 and 𝜂𝑖µ𝑖𝑇, respectively. 

The statistics of the signal and idler counts are described by the joint probability distribution 𝑃𝑁𝑠 𝑁𝑖(𝑘, 𝑙) =

P(𝑁𝑠 =  𝑘, 𝑁𝑖 =  𝑙).  Under ideal conditions, the signal and idler photons are fully correlated and 𝑃𝑁𝑠 𝑁𝑖(𝑘, 𝑙) =

𝛿(𝑘 − 𝑙)𝑃𝑁𝑠  (𝑘), where 𝑃𝑁𝑠(𝑘) = P(𝑁𝑠 =  𝑘) is the probability distribution function of the number of signal 

photons. Such conditions are achieved in spontaneous parametric downconversion when the pump is a 
monochromatic plane wave, the crystal dimensions are infinite, and the signal and idler beams are selected by 
perfectly matched apertures. In practice, these conditions are not met and the collected signal and idler beams 
photons are not fully correlated even when matched apertures are used. 12, 13 Additionally, the transmission of 
the signal and idler beams through optical elements results in further reduction of the degree of correlation.24 

 

To account for the partial correlation of the signal and idler photon numbers, we adopt a simplified model in 

which the counts are sums of totally correlated components and totally uncorrelated components: 𝑁𝑠 = 𝑁𝑡  +

 𝑁𝑢𝑠 and 𝑁𝑖 = 𝑁𝑡  +  𝑁𝑢𝑖, where 𝑁𝑡 is a random number with mean (1 − 𝛽)𝜆𝑇 representing the fully correlated 

component, and 𝑁𝑢𝑠 and 𝑁𝑢𝑖 are statistically independent and identically distributed random variables with 

mean 𝛽𝜆𝑇. This assumption is valid for matched apertures.13 The parameter 𝛽 therefore represents the fraction 



of the uncorrelated photons in the signal and idler beams. The case 𝛽 =  0 corresponds to full correlation. For 

simplicity we also use a Poisson model for these random variables so that 

𝑃𝑁𝑡(𝑘) = 𝑃((1 − 𝛽)𝜆𝑇; 𝑘), (11)  

and 

𝑃𝑁𝑢𝑠  (𝑘)  =  𝑃𝑁𝑢𝑖  (𝑘)  =  𝑃 (𝛽𝜆𝑇 ;  𝑘). (12) 

We now determine the joint probability distribution function of the observed counts 𝑃𝑁𝑠𝑠𝑁𝑖𝑖.   To  simplify  the  

derivation,  we  first  note  that  the  uncorrelated  signal  and  idler photons 𝑁𝑢𝑠  and 𝑁𝑢𝑖  can be combined with 

the additive background noise 𝑁𝑛𝑠  and 𝑁𝑛𝑖, respectively.  Thus, the probability distribution functions of the 

independent random variables 𝑁𝑢𝑠 + 𝑁𝑛𝑠  and 𝑁𝑢𝑖 + 𝑁𝑛𝑖  are 𝑃 (𝜂𝑠𝑡𝛽𝜆 + 𝜂𝑠µ𝑠;  𝑘) and 𝑃 (𝜂𝑖𝛽𝜆 + 𝜂𝑖µ𝑖;  𝑘), 

respectively.  Next, we observe that conditioned on the event that the number of twin photons 𝑁𝑡   =  𝑛, the 

random counts 𝑁𝑠𝑠   and 𝑁𝑖𝑖    are independent since the correlation between 𝑁𝑠𝑠   and 𝑁𝑖𝑖   is through 𝑁𝑡 alone.  

Hence, by  using  this  conditional independence  and  an  argument similar to the one used in deriving (6), we 

can write an expression for the conditional joint probability distribution function of 𝑁𝑠𝑠  and 𝑁𝑖𝑖    as the product 

𝑃𝑁𝑠𝑠 𝑁𝑖𝑖|𝑁𝑡
(𝑘,𝑙|𝑛)

= ∑ 𝐵(𝑛, 𝑡𝜂𝑠;  𝑖)𝑃 (𝛽𝜆𝑡𝜂𝑠𝑇 + 𝜂𝑠µ𝑠𝑇 ;  𝑘 −  𝑖)

min(𝑛,𝑘)

𝑖=0

× ∑ 𝐵(𝑛, 𝜂𝑖;  𝑗)𝑃 (𝛽𝜆𝜂𝑖𝑇 + 𝜂𝑖µ𝑖𝑇;  𝑙 −  𝑗)

min(𝑛,𝑙)

𝑗=0

. (13) 

The joint probability distribution function 𝑃𝑁𝑠𝑠𝑁𝑖𝑖(𝑘, 𝑙)  can  now be obtained by averaging (13) over all possible 

values of 𝑁𝑡: 

𝑃𝑁𝑠𝑠𝑁𝑖𝑖(𝑘, 𝑙)∑𝑃(𝛽𝜆𝑇; 𝑛)

∞

𝑛=0

 [ ∑ 𝐵(𝑛, 𝑡𝜂𝑠; 𝑖)

min(𝑛,𝑘)

𝑖=0

× 𝑃(𝛽𝜆𝑇𝜂𝑠𝑇 + 𝜂𝑠𝜇𝑠𝑇; 𝑘

− 𝑖) ∑ 𝐵(𝑛, 𝜂𝑖; 𝑗)

min(𝑛,𝑙)

𝑗=0

× 𝑃(𝛽𝜆𝜂𝑖𝑇 + 𝜂𝑖𝜇𝑖𝑇; 𝑙 − 𝑗)] . (14) 

The mean-square error 𝜖�̂�
2 associated with any photon-correlated estimator �̂� can now be evaluated as follows: 

𝜖�̂�
2 = ∑  ∑[�̂�(𝑘, 𝑙) − 𝑡]2𝑃𝑁𝑠𝑠𝑁𝑖𝑖(𝑘, 𝑙)

∞

𝑙=0

∞

𝑘=0

 . (15) 

The estimators considered in this section rely on the positive correlation between the detected signal and idler 

photons to obtain an estimation error which is below the SQL error level. It is interesting to observe that while 



the probability distribution function of the total signal counts 𝑁𝑠𝑠 is Poissonian, the conditional distribution of 

𝑁𝑠𝑠  given 𝑁𝑖𝑖   is sub-Poissonian as long as 𝛽 = 1. This conditional distribution can be obtained by dividing the 

joint distribution in (14), by the Poissonian distribution of 𝑁𝑖𝑖. To establish a quantitative connection between 

this conditional sub-Poissonian light and amplitude-squeezed light, we define the conditional Mandel 𝑄-factor 

(given that 𝑁𝑡 = 𝑛 as: 

𝑄𝑐(𝑛) =
𝐸[(𝑁𝑠𝑠 − 𝑁𝑠𝑠)

2|𝑁𝑡 = 𝑛]

𝑁𝑠𝑠
− 1. (16)  

where �̅�𝑠𝑠 is the mean of 𝑁𝑠𝑠. For the case 𝜇𝑠 = 𝜇𝑖 = 0 and ideal detection, it can be shown that 

𝑄𝑐(𝑛) =
𝛽𝜆𝑇

𝑛 + 𝛽𝜆𝑇
− 1. (17) 

The average Mandel 𝑄-factor, �̅� can now be defined by averaging (17) over 𝑛. We have numerically evaluated 

the average Mandel parameter �̅� and the results show that �̅� = 𝛽 − 1, which is exactly the fraction of 

correlated photons in the beams. Hence, if 𝛽 = 0, the conditional Mandel parameter is equivalent to that of 

maximal amplitude squeezing. In contrast, when𝛽 = 1, the conditional Mandel parameter is equal to that of 

Poissonian light. Thus, a photon-correlated pair of beams resembles a single amplitude squeezed beam in the 

sense of reducing the uncertainty of the number of photons. This reduction in the average Mandel parameter is 

manifested in the improved performance of transmittance estimation using photon-correlated beams. The 

connection between the Mandel parameter and noise in measurement in other applications have been 

considered in the literature. For example, the dependence of the photocurrent noise in short-pulse direct 

detection of non-classical light has been investigated by Huttner et al.25 The conditional variance reduction 

phenomenon has also been investigated in other applications.26 

We now develop three estimators and investigate their performance: the maximum likelihood estimator, the 

count-ratio estimator, and the count-difference estimator. 

A. Maximum-Likelihood Estimator 
For a given observed  signal-channel and idler-channel photon counts 𝑁𝑠𝑠 =  k     and 𝑁𝑖𝑖    =  𝑙, the  ML  

estimator  �̂�C,ML(𝑘, 𝑙)   is  obtained  by  maximizing the  joint  probability  distribution function 𝑃𝑁𝑠𝑠𝑁𝑖𝑖  (𝑘, 𝑙)  

given in (14).  The maximization can be achieved by setting the derivative (with respect to  𝑡)   of  𝑃𝑁𝑠𝑠𝑁𝑖𝑖  (𝑘, 𝑙)   

to zero and solving for  𝑡.   The resulting equation is: 

∑ 𝑃(𝜆𝑇;𝑛)
∞

𝑛=0

{ ∑ [
𝑖
𝑡
−
𝜂𝑠(𝑛− 𝑖)
1− 𝑡𝜂𝑠

−𝛽𝜆𝜂𝑠𝑇+
𝛽𝜆𝜂𝑠𝑇(𝑘− 𝑖)
𝜇𝑠𝜂𝑠𝑇+𝛽𝜆𝑡𝜇𝑠𝑇

]

min(𝑛,𝑘)

𝑖=0

×𝐵(𝑛,𝑡𝜂; 𝑖)𝑃(𝛽𝜆𝑡𝜂𝑇+𝜂𝜇𝑇;𝑘

− 𝑖)× ∑ 𝐵(𝑛,𝜂; 𝑗)𝑃(𝛽𝜆𝜂𝑇+𝜂𝜇𝑇; 𝑙− 𝑗) = 0
min(𝑛,𝑙)

𝑗=0

. (18)  

Equation (18) is solved numerically to obtain �̂�C,ML(𝑘, 𝑙). When the solution to (18) is not in the interval [0,1], the 

estimate�̂�C,ML  is appropriately set to either 0 or 1. Using this expression of the transmittance estimate and the 

expression of the detected counts joint probability in (14), the estimation error can be numerically evaluated. 

The results and discussions are deferred to Section 4. 



B. Count-Ratio Estimator 
This estimator is based on the ratio of counts 𝑁𝑠𝑠/𝑁𝑖𝑖, which was first proposed by Jakeman et al.20  The 

motivation for developing this estimator is the fact that the ratio of the means of 𝑁𝑠𝑠  and 𝑁𝑖𝑖   is proportional to 

𝑡 + µ𝑠, 𝜆.  The ratio 𝑁𝑠𝑠/𝑁𝑖𝑖   therefore contains information on the unknown parameter 𝑡.  The procedure we 

follow to get the general form of this estimator is to determine the mean E(𝑁𝑠𝑠/𝑁𝑖𝑖)  and express t in terms of 

this mean.  The ratio estimator, �̂�C,R is obtained by replacing E(𝑁𝑠𝑠/𝑁𝑖𝑖) in the expression for 𝑡 by the observed 

ratio 𝑁𝑠𝑠/𝑁𝑖𝑖. We show in the Appendix A that 

�̂�C,R(𝑁𝑠𝑠 , 𝑁𝑖𝑖) =
1

𝛼𝑅

𝑁𝑠𝑠
𝑁𝑖𝑖

−
𝛽𝑅
𝛼𝑅
, (19) 

where 

𝛼𝑅 = 𝜂𝑠𝜆𝑇 {
1 − exp[−𝜂𝑖(𝜆 + 𝜇𝑖)𝑇]

(𝜆 + 𝜇𝑖)𝑇
+ (1 + 𝛽 − 𝜂𝑖)E[𝑁𝑖𝑖

−1𝑢(𝑁𝑖𝑖)]} , (20) 

𝛽𝑅 = 𝜂𝑠𝜇𝑠𝑇E[𝑁𝑖𝑖
−1𝑢(𝑁𝑖𝑖)], (21) 

and the function 𝑢(⋅)  is  the unit-step [𝑢(𝑥)  = 1,  if  𝑥 > 0 and 𝑢(𝑥) = 0 otherwise).   The derivation of �̂�C,R is 

based on iterated conditional expectations and Bayes; Theorem.  The expectation E[𝑁𝑖𝑖
−1𝑢(𝑁2)] is computed 

numerically in Section 4.  Values of �̂�C,R which are in excess of unity or less than zero are hard limited to unity 

and zero, respectively. It turns out that as in the case of the ML estimator �̂�C,ML, the effect of hard limiting is 

negligible unless the photon counts are very small. 

A careful examination of �̂�C,R reveals that in the special case when 𝜂𝑖  =  1, 𝛽 =  0, and µ𝑠  =  0, no hard 

limiting is required, and further if µ𝑖  =  0, then �̂�C,R is in fact equivalent to the ML estimator �̂�C,ML. However, the 

ML estimator does exhibit a performance advantage over the ratio estimator in general as can be seen from the 

examples of Section 4. The error 𝜖C,R
2  associated with �̂�C,R can be evaluated numerically using (19) and (14) in 

(15). The results and discussions are presented in Section 4. 

The simplicity of the ratio estimator facilitates deriving an explicit upper bound for the error 𝜖C,R
2 . This upper 

bound is then used to determine the asymptotic behavior of 𝜖C,R
2  in the limit when 𝜆 or 𝑇 are large. In particular, 

an asymptotic analysis can be carried out to show that the behavior of 𝜖C,R
2  for large values of the intensity 𝜆 

(assuming 𝛽 =  0) is given by: 

𝑡{𝜂𝑠
−1 − 𝜂𝑖𝑡[1 − (1 − 𝜂𝑖

−1)2]}𝜆−1 + 𝑜(𝜆−1). (22) 

The above expression shows that, as expected, 𝜖C,R
2 → 0 as 𝜆 → ∞. The asymptotic expansion in (22) is used in 

Section 4 to determine the asymptotic advantage of the count- ratio estimator �̂�C,R over the Poissonian single-

beam estimator �̂�P,ML. 

C. Count-Difference Estimator 
We now develop an estimator based on the difference of the photon counts 𝑁𝑠𝑠 and 𝑁𝑖𝑖. The motivation is that 

in the ideal case of unity quantum eiiciency, the difference 𝑁𝑠𝑠 −𝑁𝑖𝑖  represents the number of photons that are 

not transmitted through the object, and its mean is simply (1 −  𝑡)𝜆 . More importantly, the average effect of 

background noise can be reduced since 𝑁𝑛𝑠 and 𝑁𝑛𝑖 are subtracted from each other. As in the case of the ratio 



estimator, to derive the estimator �̂�C,D, we express E(𝑁𝑠𝑠 − 𝑁𝑖𝑖) in terms of 𝑡 and then solve for 𝑡.  The 

calculations in this case are much simpler and the resulting expression is: 

�̂�C,D(𝑁𝑠𝑠 , 𝑁𝑖𝑖) =
1

𝛼𝐷
(𝑁𝑠𝑠 − 𝑁𝑖𝑖) −

𝛽𝐷
𝛼𝐷
, (23) 

where 

𝛼𝐷 = 𝜂𝑠𝜆𝑇, (24) 

𝛽𝐷 = 𝜂𝑠𝜇𝑠𝑇 − 𝜂𝑖𝜇𝑖𝑇 − 𝜂𝑖𝜆𝑇. (25) 

This choice of the coefficients 𝛼𝐷 and 𝛽𝐷 makes the above estimator unbiased. However, once this estimate is 

hard-limited to avoid situations when (23) is outside the range [0,1], some bias is introduced. This bias is 

negligible for reasonably large signal-photon rates. The asymptotic behavior of 𝜖C,R
2  for large values of 𝜆 can be 

shown to be 

𝜖C,D
2 =

1

𝜂1𝑇
{𝑡[1 − 2𝜂2(1 − 𝛽)] +

𝜂2
𝜂1
} 𝜆−1 + 𝑜(𝜆−1), (26) 

which approaches zero at a rate of 1/𝜆  as 𝜆 increases. 

4. Discussion of Results 
We have so far considered three situations for the measurement of the transmittance of an object: conventional 

(Poisson single-beam measurement, maximally squeezed (fixed photon number single-beam measurement, and 

correlated twin-beam measurement. We have de-noted these three cases by the symbols P, F, and C, 

respectively. We have also examined three types of estimators: maximum likelihood estimators, count-ratio 

estimator, and count-difference estimator. We have denoted these by the symbols ML, R, and D, respectively. In 

this section we determine the error 𝜖 for these situations and estimators. As a relative measure of the 

performance of a given estimator with respect to the standard quantum- limited performance, we introduce the 

improvement factor p, for each estimator, as the ratio between the estimation error and the error associated 

with the Poissonian single-beam ML estimator �̂�P,ML: 

𝜌
𝜖

𝜖P,ML
. (27) 

To evaluate  𝜖  and  𝜌  for  each estimator, the probability distributions (6) and (14) are computed numerically.  

To  compute  the  photon-correlated-beams ML  estimator �̂�C,ML   and the ML estimator using a fixed number of 

photons �̂�F,ML, equations (18) and (7) are solved numerically using  the joint probability distributions (14) and 

(6),  respectively.  To achieve high computational accuracy and speed, and to avoid computer overflow, 

recursive algorithms (using C programming) were developed to carry out the above computations.   For 

convenience we denote the mean number of signal photons per estimation time 𝜆𝑇  by 𝑛. 

A. Asymptotic Performance Advantage 
Before presenting the numerical results, we will examine the asymptotic behavior of the improvement factor 𝜌 

for the count-ratio estimator �̂�C,R and the count-difference estimator �̂�C,D. Using (22) and (10), we obtain 



lim
𝑛→∞

𝑝�̂�C,R
2 = 1 − 𝜂𝑠(2 − 𝜂𝑖

−1)𝑡 . (28) 

Similarly, we can use (26) and (10) and obtain 

lim
𝑛→∞

𝑝�̂�C,D
2 =

𝜂𝑖
𝜂𝑠𝑡

+ [1 − 2𝜂𝑖(1 − 𝛽)] . (29) 

From (28) we  deduce  that for any  𝜂𝑠,  𝑡 >  0,  and 𝜂𝑖    >  0.5,  there  exists  a threshold  level 𝑛 beyond which 

𝑝�̂�C,R
2 < 1.  This implies that the count-ratio estimator �̂�C,R  can outperform the Poissonian single-beam ML 

estimator as long as 𝑛  and 𝜂𝑖    are sufficiently high.  Jakeman20 et al.  showed that in the absence of background 

noise photons, a performance advantage is possible if both 𝜂𝑠  and 𝜂𝑖   are greater than 0.5.  Our result therefore 

guarantees a performance advantage under weaker conditions.   On the other hand, (29) indicates that the 

possible performance advantage associated with the count-difference estimator �̂�C,D   is very sensitive to the 

transmittance 𝑡.  In particular and unlike �̂�C,R, even under ideal detection conditions (𝜂𝑠 =  𝜂𝑖 = 1)  and  full  

photon  correlation  (𝛽 = 0),  no  performance  advantage  over  the Poissonian single-beam estimator �̂�P,ML is 

predicted when 𝑡 is very small. 

B. Performance Advantage Under Ideal Conditions 
We  now  investigate  the  performance  of  the  various  estimators  under  the  ideal  conditions of  unit  

quantum  efficiencies,  no  background  photons,  and  fully  photon-correlated  beams (𝛽 = 0).   Figure  3  (a)  

shows  the  error  𝜖  in  the  transmittance  estimation  as  a  function  of the  transmittance 𝑡,  and  Fig. 3  (b) 

shows  the  dependence  of  the  improvement  factor 𝜌  on 𝑡.  As expected, the fixed-photon-number ML 

estimator �̂�F,ML incurs the smallest absolute estimation error 𝜖.  This error is the random-deletion-limited error, 

and it is the best possible performance in transmittance estimation.  Confirming the theory presented in Section 

3.B, the count-ratio and the ML estimators are identical under these ideal conditions.  The error associated with 

the fixed-photon-number ML estimator �̂�F,ML, the photon-correlated-beams ML estimator �̂�C,ML, and the count-

ratio estimator �̂�C,R are symmetric about 𝑡 = 0.5.  This is due to the fact that the uncertainty in these estimators, 

under the given ideal conditions, is almost exclusively due to the process of photon random deletion (which 

typically exhibit a variance involving the symmetric term 𝑡(1 − 𝑡)).  Specifically, the quantum uncertainty is 

totally absent  in the  case  �̂�F,ML,  and  it is brought  to  a minimum in the  case  of �̂�C,ML  and �̂�C,R as a result of 

the  additional information provided by  the  idler beam.  In contrast, the behavior of the Poissonian single-beam 

ML estimator �̂�P,ML  does not exhibit any symmetry in the transmittance  𝑡.   This lack of symmetry is attributed 

to quantum noise which is strongly signal dependent:   the higher 𝑡  is, the higher number of signal photons 

which in turn results in a higher absolute variability in the signal photon.  This effect results in an increase in the 

absolute error 𝜖.  The dip in the curve of 𝜖�̂�P,ML near 𝑡 =  1 is a clear indication of the hard-limiting operation 

involved in the single-beam estimator. The effect of the hard limiting for the single-beam ML estimator becomes 

noticeable for values of 𝑡 near unity since there is an increased likelihood of the number of detected photons, 𝑁, 

exceeding 𝜂𝜆, 𝑇 . 

The asymmetric behavior (about 𝑡 =  0.5) of the error associated with the count-difference estimator �̂�C,D  can 

be explained in the context of the asymmetry seen in 𝜖P,ML
2  and in mind that the mean of 𝑁𝑠𝑠 −𝑁𝑖𝑖   is 

proportional to 1 − 𝑡 rather than t.  The absolute difference between the error associated with the ML fixed-

photon-number estimator and any one of the other estimators represents the error due to the quantum 

fluctuation of the number of source signal photons.  Clearly, with the exception of �̂�C,D, all the photon-

correlated-beams estimators  exhibit  a  superior  performance  in  comparison  to  the  conventional  single-

beam ML estimator �̂�P,ML  for all values of the parameter 𝑡 (see Fig. 3 (b)).  Furthermore, the improvement 

factor p decreases with t.  As for the count-difference estimator, the improvement factor 𝜌 is less than unity as 



long as 𝑡 >  0.5.  This behavior is predicted by the asymptotic expression (29). The improvement factor 𝜌 is in 

general a strong function of 𝑛 and is greatest for the fixed-photon-number estimator �̂�F,ML reaching a maximum 

value of -1.6 dB at 𝑛 = 4 (see Fig. 4). The improvement factor for the photon-correlated-beams estimators �̂�C,R 

and �̂�𝐶,ML are approximately -1 dB in the low photon count range (𝑛 <  20). Furthermore, the performance of 

�̂�C,R and �̂�C,ML becomes very comparable to the random-deletion limit as 𝑛 increases beyond 20. As expected 

from the asymptotic expression (28), 𝜌�̂�C,R → √0.5 (−1.5 dB) as 𝑛 → ∞ . As for the count-difference estimator 

�̂�C,D, it starts off with a superior performance to the Poissonian single-beam estimator �̂�𝑃,ML, but as 𝑛 increases 

(approximately beyond 10) its performance approaches that of �̂�P,ML. This result was also predicted from (29). 

C. Effect of Nonideal Detectors and Background Noise 
In general, the improvement factors for the correlated-photon-beams estimators (�̂�C,D, �̂�C,ML, and �̂�C,R) and the 

fixed-photon-number estimator �̂�F,ML  is reduced as a result of the presence of  background  noise  and  low  

quantum  efficiency.   Figure  5  shows  the  dependence  of  the error E and the improvement factor   on the 

transmittance t for each estimator for the case 𝑛 = 20,  𝜂𝑠 = 𝑛𝑖 = 0.7,  µ𝑠 = µ𝑖 = 5,  and 𝛽 = 0.   The  results  

indicate  that  among  all the photon-correlated-beams estimators, the ML estimator �̂�C,ML   has the best 

performance (as  expected).   The  improvement  factor  associated  with  �̂�C,ML   is  as  high  as  -1.5  dB  for  a 

transmittance parameter 𝑡 = 0.9.  Nonetheless, for low values of the transmittance parameter 𝑡 (e.g., 𝑡 <  0.3), 

�̂�C,ML   shows no improvement over the conventional ML estimator �̂�P,ML   at such a low signal level 𝑛.  The fact 

that �̂�C,ML  results in a greater error than the conventional single-beam  ML  estimator  �̂�P,ML   seems-counter  

intuitive  at  first,  since  one  might  suspect that �̂�C,ML should always be a better estimator than �̂�P,ML since they 

are based on the same ML principle and the former enjoys the added benefit of the information contained in the 

idler-channel photons 𝑁𝑖𝑖. However, one needs to keep in mind that an ML estimator does not necessarily 

generate a least mean-square error.21 The performance of the count- ratio estimator �̂�C,R is slightly inferior to 

that associated with photon-correlated-beams ML estimator �̂�C,ML, and the performance of the count-difference 

estimator �̂�C,D is the worst among all estimators (see Fig. 6). No improvement is obtained with the count-

difference estimator for any value of 𝑛 in this case. The improvement factor decreases with 𝑛 for all the photon-

correlated-beams estimators. As 𝑛 increases beyond 40, approximately, the improvement factor associated with 

�̂�C,R levels off at -0.84 dB which is in agreement with the limit (28). 

D. Effect of Partial Correlation of Photons of the Twin Beams 
The effect of reduced correlation (𝛽 >  0) between the photon numbers in the signal and idler beams is 

depicted in Figs. 7 and 8. The performance of each of the photon-correlated-beams estimators is degraded 

when the value of 𝛽 is changed from 0 to 0.2. For 𝑛 =  20 and for the set of parameters 𝜂𝑠 = 𝑛𝑖 = 0.7,  µ𝑠 =

µ𝑖 = 5,  and 𝛽 = 0.2, the photon-correlated-beams ML estimator �̂�C,ML remains superior to the Poissonian 

single-beam estimator for values of the transmittance parameter 𝑡 <  0.7. The count-ratio estimator exhibits a 

superior performance over the Poissonian single-beam estimator at higher values of n (in excess of 25) as seen 

in Fig. 8. Hence, both the photon-correlated-beams estimators �̂�C,R and �̂�C,ML do exhibit a performance 

advantage over the Poissonian single-beam estimator as long as the signal level 𝑛 is beyond a certain threshold 

depending on the parameter 𝛽, the background-noise level, and the quantum efficiencies of the detectors. 

5. Conclusions 
The precision of optical measurement using classical light, under weak illumination conditions, is limited by the 

quantum noise and the randomness associated with the very process of photon absorption. The effect of 

quantum noise can be reduced by using non-classical light (sub-Poisson light) or by using a pair of beams 

exhibiting a positively correlated pho- ton counts. This paper establishes the theory for developing and analyzing 

estimators of the optical transmittance using a pair of photon-correlated beams generated by parametric 



downconversion. We have developed three estimators of the transmittance based on the pho- ton counts from 

the photon-correlated beams: the maximum likelihood (ML) estimator, the count-ratio estimator, and the 

count-difference estimator. The average error, which is de- fined as the square root of the mean-square error, of 

each of these estimators was compared to the error associated with the Poissonian single-beam ML estimator. 

As a benchmark for the maximum possible improvement in the estimation performance, the estimators were 

compared to the ML estimator using maximally photon-number squeezed light (light with a deterministic 

number of photons) where the estimation error is due only to random deletion of photons. 

We have shown that a reduction in the estimation error is possible in comparison to the error associated with 

the Poissonian single-beam estimator. This improvement in the performance depends on key factors such as the 

intensity of light, the level of photon correlation, the quantum efficiency of the detectors, the level of 

background noise, and the actual value of the transmittance. The performance of the count-ratio estimator is 

generally very similar to that of the ML estimator except when the average photon counts are extremely low 

(e.g., 𝑛 <  5 for the case when the transmittance 𝑡 is 0.5). In this low photon-count regime, the ML estimator is 

superior to all estimators and the performance of the count-difference estimator is comparable to the other two 

photon-correlated beam estimators. In fact, the errors associated with the photon-correlated ML estimator and 

the count-ratio estimator approach the ideal-source single-beam limit as the photon count increases. For 

example, under ideal detection conditions and no background noise, this limit is nearly achieved when the signal 

photon count is in excess of 20 (assuming 𝑡 =  0.5). In contrast, the performance of the count-difference 

estimator becomes equivalent to the performance of the Poissonian single-beam estimator when the photon 

count is high. Therefore, in as much as the count- difference estimator exhibits an improvement in the 

performance for transmittance values in excess of 0.5, it falls short of the Poissonian single-beam estimator for 

transmittance values that are less than 0.5. Hence, the count-difference estimator is not always useful in 

exploiting the photon correlation to reduce quantum noise. Finally, using asymptotic analysis, we have shown 

that a performance advantage of the count-ratio estimator over the Poissonian single-beam estimator is always 

possible (under the condition that the quantum efficiency of the idler-channel detector is greater than 0.5) by 

means of increasing the signal photon counts. 

APPENDIX A: DERIVATION OF THE COUNT-RATIO ESTIMATOR 
We first start with evaluating the expectation E(𝑁𝑠𝑠/𝑁𝑖𝑖)𝑢(𝑁𝑖𝑖). By conditioning on 𝑁𝑖𝑖, we obtain the 

conditional mean 

E [
𝑁𝑠𝑠
𝑁𝑖𝑖

𝑢(𝑁𝑖𝑖)|𝑁𝑖𝑖] = 𝑁𝑖𝑖
−1𝑢(𝑁𝑖𝑖)E(𝑁𝑠𝑠|𝑁𝑖𝑖). 

Now the last expectation can be computed by first conditioning on 𝑁𝑡, the actual number of twin photons, and 

then averaging over 𝑁𝑡: 

E(𝑁𝑠𝑠|𝑁𝑖𝑖) = E[E(𝑁𝑠𝑠|𝑁𝑖𝑖 , 𝑁𝑡) |𝑁𝑖𝑖]. 

Now since the correlation between 𝑁𝑠𝑠 and 𝑁𝑖𝑖  is through 𝑁𝑡 alone, we obtain 

E(𝑁𝑠𝑠|𝑁𝑖𝑖 , 𝑁𝑡) = E(𝑁𝑠𝑠|𝑁𝑡) 

and the last conditional mean can be easily evaluated as 

E(𝑁𝑠𝑠|𝑁𝑡) = 𝑡𝜂𝑠𝑁𝑡 + 𝜂𝑠(𝜇𝑠 + 𝑡𝛽𝜆)𝑇. 

Hence, 



E(𝑁𝑠𝑠|𝑁𝑖𝑖) = E[E(𝑁𝑠𝑠|𝑁𝑡)|𝑁𝑖𝑖] = 𝜂𝑠(𝜇𝑠 + 𝑡𝛽𝜆)𝑇 + 𝑡𝜂𝑠E(𝑁𝑡|𝑁𝑖𝑖), 

From which we obtain 

E [
𝑁𝑠𝑠
𝑁𝑖𝑖

𝑢(𝑁𝑖𝑖)]

= 𝜂𝑠(𝜇𝑠 + 𝑡𝛽𝜆)𝑇E[𝑁𝑖𝑖
−1𝑢(𝑁𝑖𝑖)] + 𝑡𝜂𝑠E[𝑁𝑖𝑖

−1𝑢(𝑁𝑖𝑖)E(𝑁𝑡|𝑁𝑖𝑖)]. 

The key step now is to evaluate the conditional expectation E(𝑁𝑡|𝑁𝑖𝑖).  From the definition of the conditional 

mean and Bayes' rule, 

E(𝑁𝑡|𝑁𝑖𝑖 = 𝑙) = ∑𝑛
P(𝑁𝑡 = 𝑛,𝑁𝑖𝑖 = ℓ)

P(𝑁𝑖𝑖 = ℓ)

∞

𝑛=0

. 

It is convenient to define the random variable 𝑀 as the sum of the detected background-noise  photons  𝑁𝑛𝑖   

and  the  detected  uncorrelated  signal  photons  𝑁𝑢𝑖.   Consequently,  𝑀  is itself Poissonian with mean  

𝑛𝑖(1 − 𝛽)𝜆𝑇 + 𝜂𝑖𝜇𝑖𝑇.  Using the law of total probability and the independence of 𝑁𝑡, and 𝑀, we obtain 

∑ 𝑛∑
P(𝑁𝑡 = 𝑛,𝑁𝑖𝑖 = ℓ,𝑀 = 𝑖)

P(𝑁𝑖𝑖 = ℓ)

ℓ

𝑖=0

∞

𝑛=0

 

∑𝑛

∞

𝑛=0

∑
P(𝑁𝑖𝑖 = ℓ|𝑁𝑡 = 𝑛,𝑀 = 𝑖)P(𝑁𝑡 = 𝑛)P(𝑀 = 𝑖)

P(𝑁𝑖𝑖 = ℓ)

ℓ

𝑖=0

. 

Observe that conditional on 𝑀 = 𝑖, 𝑁𝑖𝑖  is simply 𝑁𝑡 less a randomly deleted fraction of it (with deletion 

probability 1 − 𝜂𝑖. Thus, 

P(𝑁𝑖𝑖 = ℓ|𝑁𝑡 = 𝑛,𝑀 = 𝑖) = 𝑢(𝑛 − ℓ + 1) (
𝑛

ℓ − 1
) 𝜂𝑖

ℓ−1(1 − 𝜂𝑖)
𝑛−ℓ+𝑖 . 

We now use the fact that 

P(𝑁𝑡 = 𝑛) = (𝛽𝜆)𝑛 exp(−𝛽𝜆)/𝑛!, P(𝑀 = 𝑖)

= {𝜂𝑖𝑇[(1 − 𝛽)𝜆 + 𝜇𝑖]}
𝑖 × exp{−𝜂𝑖𝑇[(1 − 𝛽)𝜆 + 𝜇𝑖]}/𝑖! 

and carry out the algebra to finally obtain 

E(𝑁𝑡|𝑁𝑖𝑖 = ℓ) = (1 − 𝛽)𝜆 [(1 − 𝜂𝑖)𝑇 =
ℓ

𝜆 + 𝜇𝑖
]. 

Using this last result in (A1) we obtain 



E
𝑁𝑠𝑠
𝑁𝑖𝑖

𝑢(𝑁𝑖𝑖) = 𝛼𝑅𝑡 + 𝛽𝑅 , 

where𝛼𝑅 and 𝛽𝑅 are given in (20 and (21) respectively. 
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FIGURE CAPTIONS 

 

Fig. 1. Schematic diagram of single-beam measurement. A probe beam with photon flux 𝜆 is transmitted through 
an object with transmittance 𝑡, and the photon count 𝑁 (in an interval 𝑇) is measured by using a detector (with 
quantum efficiency 𝜂) and a counter. The background-noise photon flux is 𝜇. The measurement 𝑁 is the sum of 
the detected probe beam photons 𝑁𝑑𝑠 and the detected background photons 𝑁𝑛. A single-beam estimator uses 
the photon count N to generate an estimate �̂� of 𝑡. 

 

Fig.  2.  Schematic diagram of measurement with photon-correlated beams.  The signal beam (with photon flux  

𝜆)  is  used as a probe and transmitted through the object (with transmittance  𝑡)  while  the idler beam (also 

with a photon flux  𝜆)  is  used as a reference. The  observed  output 𝑁𝑠𝑠   of the signal-channel counter  is the 

sum of the detected  photons 𝑁𝑑𝑠, in the duration 𝑇 , resulting from the transmitted signal beam and the 

detected back- ground photons 𝑁𝑛𝑠.  The observed output 𝑁𝑖𝑖   of the idler-channel counter is the sum of the 

detected photons  𝑁𝑑𝑖    resulting from the idler beam and the detected background photons 𝑁𝑛𝑠.  The quantum 



efficiencies of the detectors in the signal and idler channels are 𝜂𝑠  and 𝜂𝑖, respectively. A correlated-photon 

estimator uses the observations 𝑁𝑠𝑠 and 𝑁𝑖𝑖  to generate an estimate �̂� of the transmittance 𝑡. 

 

Fig.  3.  a) The estimation error s as a function of the transmittance parameter 𝑡 for the various estimators: 

Poissonian single-beam ML estimator �̂�P,ML  (top solid line), fixed-photon-number ML estimator �̂�F,ML   (bottom  

solid  line),  photon-correlated-beams  ML  estimator �̂�C,ML  (dashed line), count-ratio estimator �̂�C,R  

(represented by the symbol × and overlaying the dashed line), and count-difference estimator �̂�C,D   

(dashed/dotted  line  appearing  near the top portion of the figure). The estimation parameters are: 𝑛 =  0, 

𝜂𝑠  =  𝜂𝑖   =  1.0, µ𝑠  =  µ𝑖  =  0, and 𝛽 =  0. Notice the complete overlap between the count-ratio estimator 

curve and the photon-correlated-beams ML estimator curve. b) The improvement factor 𝜌 as a function of the 

transmittance parameter 𝑡. 

 



Fig. 4. a) The estimation error 𝜖 as a function of the mean number of signal photons 𝑛 for the various estimators: 

Poissonian single-beam ML estimator �̂�P,ML (top solid line), fixed-photon-number ML estimator �̂�F,ML (bottom 

solid line), photon-correlated-beams ML estimator �̂�C,ML (dashed line just above the bottom solid line), count-

ratio estimator �̂�C,R (dotted line), and count-difference estimator �̂�C,D (dashed/dotted line). The estimation 

parameters are: 𝑡 =  0.5, 𝜂𝑠  =  𝜂𝑖   =  1.0, µ𝑠  =  µ𝑖  =  0, and 𝛽 =  0. Notice the complete overlap between 

the count-ratio estimator curve and the photon-correlated-beams ML estimator curve. b) The improvement 

factor 𝜌 as a function of the mean number of signal photons 𝑛. 

 

Fig. 5. a) The estimation error 𝜖 as a function of the transmittance parameter 𝑡 for the various estimators: 

Poissonian single-beam ML estimator �̂�P,ML (top solid line), fixed-photon-number ML estimator �̂�F,ML (bottom 

solid line), photon-correlated-beams ML estimator t C,M L (dashed line), count-ratio estimator �̂�C,R (dotted line), 

and count-difference estimator �̂�C,D (dashed/dotted line). The estimation parameters are: 𝑛 =  20, 𝜂𝑠  =  𝜂𝑖   =

 0.7, µ𝑠  =  µ𝑖  =  5, and 𝛽 =  0. b) The improvement factor 𝜌 as a function of the transmittance parameter 𝑡. 



 

Fig. 6. a) The estimation error s as a function of the mean number of signal photons n for the various estimators: 

Poissonian single-beam ML estimator �̂�P,ML (top solid line), fixed-photon-number ML estimator �̂�F,ML (bottom 

solid line), photon-correlated-beams ML estimator �̂�C,ML (dashed line), count-ratio estimator �̂�C,R (dotted line), 

and count-difference estimator �̂�C,D  (dashed/dotted line). The estimation parameters are: 𝑇 =  1, 𝑡 =  0.8, 

 

𝜂𝑠  =  𝜂𝑖   =  0.7, µ𝑠  =  µ𝑖  =  5, and 𝛽 =  0. b) The improvement factor 𝜌 as a function of the mean number of 

signal photons 𝑛. 

 

Fig. 7. a) The estimation error s as a function of the transmittance parameter t for the various estimators: 

Poissonian single-beam ML estimator �̂�P,ML (top solid line), fixed-photon-number ML estimator �̂�F,ML (bottom 

solid line), photon-correlated-beams ML estimator �̂�𝐶,ML (dashed line), count-ratio estimator �̂�C,R (dotted line), 



and count-difference estimator �̂�C,D (dashed/dotted line). The estimation parameters are: 𝑇 =  1, 𝑛 =  20, 

𝜂𝑠  =  𝜂𝑖   =  0.7, µ𝑠  =  µ𝑖  =  5, and 𝛽 =  0.2. b) The improvement factor 𝜌 as a function of the transmittance 

parameter 𝑡. 

 

Fig. 8. a) The estimation error 𝜖 as a function of the mean number of signal photons 𝑛 for the various estimators: 

Poissonian single-beam ML estimator �̂�P,ML (top solid line), fixed-photon-number ML estimator �̂�F,ML (bottom 

solid line), photon-correlated-beams ML estimator �̂�C,ML (dashed line), count-ratio estimator �̂�C,R (dotted line), 

and count-difference estimator �̂�C,D  (dashed/dotted line). The estimation parameters are: 𝑇 =  1, 𝑡 =  0.8, 

𝜂𝑠  =  𝜂𝑖   =  0.7, µ𝑠  =  µ𝑖  =  5, and 𝛽 = 0.2. b) The improvement factor 𝜌. as a function of the mean number 

of signal photons 𝑛 as a function of the mean number of signal photons 𝑛. 
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