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Abstract: 
The well-known analytical formula for the excess noise factor associated with avalanche photodiodes (APDs), 

developed by R. J. McIntyre in 1966, assumes the injection of either an electron or a hole at the edge of the 

APD's avalanche region. This formula is based on the statistics of the probabilities of carriers gaining and losing 

energy subject to high electric fields. However, this analytical formula, is not applicable in cases when photons 

are absorbed inside the avalanche region (even though the physics of the high field transport remains the same), 

and its use may severely underestimate or overestimate the actual excess noise factor depending on the 

absorption profile and the hole-to-electron ionization coefficient ratio, k. Here, an easy-to-use exact analytical 

formula is derived for the excess noise factor of APDs while taking into account a mixed-carrier initiated 

avalanche multiplication process, which is triggered by a parent electron-hole pair at an arbitrarily specified 

location within the multiplication region. The derivation relies on analytically solving a special case of a 

previously reported recursive integral equations [Hayat et al., IEEE Trans. Electron Devices, vol. 39, no. 3, pp. 

546-552, Mar. 1992.], and the result matches the formula reported by McIntyre in 1999 using a different and 

limited technique. In addition, an expression for the excess noise factor is presented in the case when the 

location of the parent electron-hole pair within the multiplication region obeys an arbitrary exponential 

distribution. The results show that in contrast to the case of edge parent-electron injection, when mixed 

injection is allowed even a small level of hole ionization (e.g., small k ~ 0.0001) causes the excess noise factor to 

increase dramatically, depending on the absorption profile as it ranges from narrow to flat within the 

multiplication region. The theoretical results are validated against experimental results for Si APDs. 

SECTION I. Introduction 
Avalanche photodiodes (APDs), with their high internal gain, are widely used in optical communication systems 

due to the improvement they offer to the receiver's signal-to-noise ratio (SNR). The receiver performance is 

strongly dependent on the APDs mean gain (M) and the excess noise factor (F), which represents the random 

fluctuations in the gain. Thus, availability of analytical expressions for M and F is important for calculating the 

SNR as well as the bit-error probability in optical receivers [1]. The quantities M and F are commonly related to 

the hole-to-electron ionization coefficient ratio, k, as expressed in McIntyre's original theory [2] dating back to 

1966. The F value is at a minimum for materials with a small value of k and electron edge injection (or very 

large k for hole edge injection), namely when a parent electron (hole) is injected into the appropriate edge of 

the multiplication region, resulting in a chain of impact ionizations. In reality, however, mixed-carrier injection 

can occur in the multiplication region (MR), whereas photons are absorbed inside the MR [2]. Such scenario 

results in a parent electron-hole pair inside the MR initiating the avalanche multiplication process, where each 

parent carrier independently and individually creates its own chain of impact ionizations. 

It turns out that mixed injection plays an important role in the behavior of F as a function of M, as originally 

pointed out by Webb et al. in [3]. For example, we will show in this paper even when k is very low 

(∼0.0001), F begins to increase dramatically beyond a certain threshold value of M if mixed injection is allowed. 

Moreover, the mean gain threshold at which F becomes large is determined as a function of the location of 

mixed injection and k. The main contribution of this paper is to develop an exact analytical formula for F in the 

case of mixed-injection avalanche multiplication process. Consequently, depending on the photon absorption 

profile within the MR, photogenerated carriers within the MR contribute collectively to mixed-injection 

multiplication in a distributed fashion. Thus, for a given APD structure, M and F may actually depend indirectly 

on the wavelength of light. Note that the small values of k of 0.01 or lower are important from a practical 

standpoint as there are several bulk materials that exhibit this type of mixed-injection behavior including 

Si [4], [5], InAs [6], and AlAsSb [7]. In addition, high values of k (>0.1) are also important for submicron 



multiplication regions (e.g., Si pn-junction APDs), where the very high electric fields (>255 kV/cm) cause an 

increase in the k value [8], [9]. 

Although McIntyre developed closed-form expressions for the mean gain and noise spectral density in the case 

of mixed injection [2], he did not offer a formulation of the excess noise factor under distributed-injection case. 

In 1992, Hayat et al. formulated an analytical model [10] for avalanche multiplication that allowed the 

determination of the excess noise factor in the case of mixed injection while also incorporating the effect of 

dead space, which is the minimum distance a carrier must travel after an impact ionization before it may effect 

another ionization. In 2017, Hossain et al. used the numerical approach to further calculate the excess noise 

factor for Si APDs in the case of distributed mixed injection [9], where the photon absorption profile within the 

MR was taken into account. Experiments have also shown the wavelength dependence of the excess-noise 

factor; moreover, good agreement between numerical solutions of the analytical model and experiments on the 

role of mixed injection has been shown [5], [8]–[9][10][11][12]. The experiments and the numerically 

calculated F under mixed injection were also compared with that calculated using the McIntyre's formula [2], 

which assumes edge injection. For example, the comparison showed that McIntyre's F significantly 

overestimated the measured F for CMOS APDs [8]. Other examples are low doped (i.e., thick) CMOS APDs [13], 

where the excess noise factors were calculated using the classical McIntyre's formula. As shown in Fig. 3 in [13], 

the classical noise can be easily calculated with pure electrons and holes; however, this is not the case when a 

distributed carrier injection profile is taken into consideration. The calculated F does not lie half-way between 

the two extremes; moreover, the correct answer cannot be calculated from the excess noise factors associated 

with pure electron and pure hole injections. Therefore, the aforementioned results emphasize the need for a 

distributed-injection formula for F in practice. 

To the best of our knowledge, there is no analytical formula for the excess noise factor in the case of distributed 

injection APDs taking into account photon absorption profile. The most relevant work relevant to a closed-form 

formula for the excess noise factor in the case of mixed injection is the work of Hayat et al. [14]. The article 

shows exact analytical expressions for M and F under edge injection by finding an exact analytical solution to the 

recursive integral equations [10] that characterize the first and second moments of the populations of electrons 

and holes under mixed injection. This approach is termed the characteristic method (CM). The article in [14] did 

not provide explicit formulas for F under mixed injection. Note that McIntyre provided a mixed injection formula 

for F [15] following the derivation in [2] using a different approach, which is limited to the case when dead space 

is ignored. 

In this work, we revisit the CM approach to rigorously derive an exact analytical formula of the excess noise 

factor for mixed carrier injection with zero dead space. The novel probabilistic and direct derivation given here 

in (21) has been not published anywhere in its form. The analytically calculated F is compared with McIntyre's 

1999 formula [15]and that calculated numerically using dead-space multiplication theory (DSMT) [10], and 

agreement is shown. In addition, expressions for the analytical mean gain and excess noise factor are presented 

while taking into account different absorption profiles using an exponential decay function. Moreover, 

previously reported F for the P+/N-well CMOS APD [9] are compared with that analytically calculated under 

mixed injection case and good agreement is shown. 

SECTION II. Analytical Formulation of the Mixed-Injection F 
Consider the multiplication region of an APD extended from x = 0 to x = W, where W is the avalanche 

multiplication-region width. It is further assumed that the avalanche multiplication process is initiated by a 

photogenerated electron-hole pair within the MR. Now consider a parent electron and a parent hole that are 

located at position xwithin the multiplication region. Electrons are assumed to travel in the positive x-direction 

at their saturation velocity under the influence of electric field and they are capable of impact ionizing with an 
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ionization coefficient, α. Similarly, holes travel in the negative x-direction and are capable of impact ionizing with 

an ionization coefficient, β. This avalanche process produces a net stochastic gain, G(x), when all the carriers 

have exited the MR; this quantity is the total number of electron-hole pairs generated as a result of a single 

parent electron-hole pair, located at x, initiating the multiplication process. Next, we analyze the statistics 

of G(x). 

Following Hayat et al. [10], define Z(x) as the random sum of electrons and holes produced by an electron, 

including the initiating parent electron. Similarly, let Y(x) be the random number of all electrons and holes 

produced by the hole and its offsprings, including the initiating parent hole. Note that Z(W) = 1 and Y(0) = 1. 

Moreover, 𝐺(𝑥) =
1

2
[𝑍(𝑥) + 𝑌(𝑥)]. Now consider the averages z(x) = <Z(x)> and y(x) = <Y(x)>, which are the 

means of Z(x) and Y(x), respectively; similarly, z2(x) = <Z2(x)> and y2(x) = <Y2(x)> are the second moments of Z(x) 

and Y(x), respectively. Here, the bracket denotes ensemble average. The mean of G(x) is obtained from the 

quantities of z(x) and y(x): 

𝑀(𝑥) =< 𝐺(𝑥) >=
1

2
[𝑧(𝑥) + 𝑦(𝑥)].(1) 

On the other hand, the second moment of the gain in the case of a mixed-carrier initiated avalanche is given by 

< 𝐺2(𝑥) ≥
1

4
[𝑧2(𝑥) + 2𝑧(𝑥)𝑦(𝑥) + 𝑦2(𝑥)].(2) 

Finally, in this paper, we define the mixed-injection excess-noise factor, F(x), as follows: 

𝐹(𝑥) =
<𝐺2(𝑥)>

<𝐺(𝑥)>2 .(3) 

The above equations require knowledge of the ionization coefficients for electrons (α) and holes (β), 

respectively. The electric-field dependent ionization coefficients are widely modeled [9], [15]–[16][17][18] using 

Chynoweth's formula [19] and the expressions are given by 

𝛼(𝐸) = 𝐴𝑒𝑒𝑥𝑝⌈−(
𝐵𝑒

𝐸
)𝑚𝑒⌉ (4a) 

and 

𝛽(𝐸) = 𝐴ℎ𝑒𝑥𝑝⌈−(
𝐵ℎ

𝐸
)𝑚ℎ⌉,(4b) 

where E is the electric field and the A, B, and m are material-dependent parameters, and they are chosen from 

material specific experimental and fitted data [9], [15]–[16][17][18]. The electric field within the MR in 

conjunction with the ionization coefficients, αand β, are used in (3) to predict the injection-position dependent 

excess-noise factor under mixed injection case. 

A. Formula for Mixed-Injection Mean Gain 
In order to obtain an exact analytical formula for M(x), we solve the recursive integral equations from the DSMT 

model [10] with zero dead space to obtain the quantities z(x) and y(x) under mixed injection. The recursive 

integral equations for z(x) and y(x) are equations (14) and (15) in [10]: 

For 0 ≤ 𝑥 ≤ 𝑤, 

𝑧(𝑥) = [1 − (1 − 𝑒−𝛼(𝑊−𝑥))𝑢(𝑊 − 𝑥)]

+ ∫ [2𝑧(𝜉) + 𝑦(𝜉)]
𝑊

𝑥
𝛼𝑒−𝛼(𝜉−𝑥)𝑢(𝜉 − 𝑥)𝑑𝜉

𝑦(𝑥) = [1 − (1 − 𝑒−𝛽𝑥)𝑢(𝑥)]

+ ∫ [2𝑦(𝜉) + 𝑧(𝜉)]
𝑥

0
𝛽𝑒−𝛽(𝑥−𝜉)𝑢(𝑥 − 𝜉)𝑑𝜉,

,(5a)(5b) 
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where 𝑢(𝑥) = 1 for 𝑥 ≥ 0, and 0 otherwise. 

Upon differentiation with respect to x and simple back substitution, the differential forms of the above integral 

equations are 

𝑧′(𝑥) + 𝛼[𝑧(𝑥) + 𝑦(𝑥)] = 0 (6a) 

View Source and 

𝑦′(𝑥) − 𝛽[𝑧(𝑥) + 𝑦(𝑥)] = 0,(6b) 

with the boundary conditions, 𝑧(𝑤) = 1 and 𝑦(0) = 1. The approach we undertake to solve for z(x) and y(x) 

exactly is based on proposing exponential-form solutions, as done in [10]. The desired exponents are then found 

by substituting these assumed exponential forms in (6a) and (6b), and obtaining an algebraic characteristics 

equationcharacterizing the exponents that result in self consistency in (6a) and (6b). More precisely, the general 

structure of the solution is a superposition of terms of the form 

𝑧(𝑥) = 𝑐1𝑒𝑟𝑥 (7a) 

and 

𝑦(𝑥) = 𝑐2𝑒𝑟𝑥, (7b) 

where 𝑐1 and 𝑐2 are the unknown coefficients and r is a solution to the characteristic equation. 

After we substitute these general solutions from (7a) and (7b) into (6a) and (6b), respectively, we obtain the 

matrix equation 

[
(𝑟 + 𝛼)

−𝛽

𝛼
(𝑟 − 𝛽)][

𝑐1

𝑐2
] = [

0
0

]..(8) 

For a nontrivial (i.e., nonzero) solution to 𝑐1 and 𝑐2 in (8), we require that the matrix above to be singular (its 

determinant must be zero), which results in the characteristic equation characterizing r: 

(𝑟 + 𝛼)(𝑟 − 𝛽) + 𝛼𝛽 = 0. (9) 

We begin by considering the case when electron and hole ionizations are unequal (k ≠ 1), in which case (9) has 

two roots: 𝑟1 = 0and 𝑟1 ≡ 𝑟 = 𝛽 − 𝛼 ≠ 0. The general solution in this case becomes 

𝑧(𝑥) = 𝑐1 + 𝑐1
′ 𝑒𝑟𝑥 (10a) 

and 

𝑦(𝑥) = 𝑐2 + 𝑐2
′ 𝑒𝑟𝑥..(10b) 

Upon substituting the general solutions from (10a) and (10b) into (6a) and applying the boundary 

conditions 𝑧(𝑤) = 𝑦(0) = 1, we obtain a system of four linear equations with four unknown 

coefficients 𝑐1, 𝑐1
′ , 𝑐2, and 𝑐2

′ with r. After some algebra, the unknown coefficients are determined and the first 

moments of 𝑧(𝑥) and 𝑦(𝑥)are obtained as follows: 

𝑧(𝑥) =
(𝑟+𝛼+𝛼𝑒𝑟𝑤)−2𝛼𝑒𝑟𝑥

(𝑟+𝛼−𝛼𝑒𝑟𝑤)
 (11a) 

and 

𝑦(𝑥) =
−(𝑟+𝛼+𝛼𝑒𝑟𝑤)+2(𝑟+𝛼)𝑒𝑟𝑥

(𝑟+𝛼−𝛼𝑒𝑟𝑤)
. (11b) 
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Next, the analytical expression for the mean-gain for a mixed-carrier initiated avalanche, M(x), is obtained from 

the quantities of z(x) and y(x) using (1). Specifically, we maintain that 

𝑀(𝑥) =
𝑟𝑒𝑟𝑥

𝑟+𝛼−𝛼𝑒𝑟𝑤 =
(𝛽−𝛼)𝑒(𝛽−𝛼)𝑥

𝛽−𝛼𝑒(𝛽−𝛼)𝑤 ; (12a) 

or equivalently, 

𝑀(𝑥) =
(1−𝑘)𝑒−𝛼(1−𝑘)𝑥

𝑒−𝛼(1−𝑘)𝑤−𝑘
, (12b) 

where 𝑘 =
𝛽

𝛼
. This expression was previously derived by McIntyre (equation (5) in [2]) using a different method. 

In addition, the expression for ionization parameter, 𝛼𝑤, in terms of k, M(x) and the mixed-injection location 

(x/w) within the MR is derived as 

𝛼𝑤 = ln(
𝑒(1−𝑘)

𝑘
−

(1−𝑘)𝑒
(1−𝑘)(

𝑥
𝑤

)

𝑘𝑀(𝑥)
). (13a) 

Recall that for an APD device, avalanche breakdown occurs for a value of ionization parameter for which the 

mean gain M(x) is infinite. In this case, (13a) becomes 

(𝛼𝑤)𝑏 = ln
𝑒(1−𝑘)

𝑘
. (13b) 

Hence, the breakdown condition is independent of the location of the parent injection, x. 

For the case of electron injection 𝛽 < 𝛼, hence 𝑘 < 1, and 𝑥 = 0), (12) collapses to the well-known McIntyre's 

classical mean-gain formula in the case of edge electron-injection [2]: 

𝑀𝑒 = 𝑀(0) =
1−𝑘

𝑒−𝛼(1−𝑘)𝑤−𝑘
. (14a) 

Similarly, for hole injection (𝛽 > 𝛼, equivalently 𝑘 > 1and 𝑥 = 𝑤), (12) becomes 

𝑀ℎ = 𝑀(𝑤) =
1−

1

𝑘

𝑒
−𝛽(1−

1
𝑘)𝑤

−
1

𝑘

. (14b) 

Next, consider the case k = 0 in (14a) or k = ∞ in (14b), and obtain 

𝑀𝑒 = 𝑒𝛼𝑤 (15a) 

and 

𝑀ℎ = 𝑒𝛽𝑤. (15b) 

Similarly, to consider the case when k = 1 in (12) and (14), we take the limit as k → 0 (or k → ∞) and obtain the 

familiar position-independent formula 

𝑀(𝑥) =
1

1−𝛼𝑤
. (16) 

The special-case expressions in (15) and (16) are the well-known McIntyre formulas (equations (21) and (24) 

in [20]). 

We note that the approach followed in this paper to obtain the mixed-injection mean gain is intrinsically 

different from that followed by McIntyre. Unlike McIntyre's approach, the approach here lends itself to a 

solution of the mixed-injection excess noise factor, as described next. 
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B. Formula for Mixed-Injection Excess-Noise Factor 
In order to obtain an exact analytical formula for F(x), we solve the recursive integral equations from the DSMT 

model [10] with zero dead space to obtain the second moments of electrons and holes, z2(x) and y2(x), 

respectively, under mixed injection. The recursive integral equations for the second moments of Z(x) and Y(x) 

are equations (22) and (23) in [10], and they are expressed below: 

For 0 ≤ 𝑥 ≤ 𝑤, 

𝑧2(𝑥) = [1 − (1 − 𝑒−𝛼(𝑊−𝑥))𝑢(𝑊 − 𝑥)]

+ ∫ [2𝑧2(𝜉) + 𝑦2(𝜉) + 4𝑧(𝜉)𝑦(𝜉) + 2𝑧2(𝜉)]
𝑊

𝑥

× 𝛼𝑒−𝛼(𝜉−𝑥)𝑢(𝜉 − 𝑥)𝑑𝜉

 (17a) 

and 

𝑦2(𝑥) = [1 − (1 − 𝑒−𝛽𝑥)𝑢(𝑥)]

+ ∫ [2𝑦2(𝜉) + 𝑧2(𝜉) + 4𝑧(𝜉)𝑦(𝜉) + 2𝑦2(𝜉)]
𝑥

0

× 𝛽𝑒−𝛽(𝑥−𝜉)𝑢(𝑥 − 𝜉)𝑑𝜉.

 (17b) 

The differential forms of the above recurrence equations are 

𝑧2
′ (𝑥) + 𝛼[𝑧2(𝑥) + 𝑦2(𝑥)] = −2𝛼𝑧(𝑥)(2𝑦(𝑥) + 𝑧(𝑥)) (18a) 

and 

𝑦2
′ (𝑥) − 𝛽[𝑧2(𝑥) + 𝑦2(𝑥)] = 2𝛽𝑦(𝑥)(2𝑧(𝑥) + 𝑦(𝑥)),,(18b) 

with the boundary conditions, 𝑧2(𝑤) = 1and 𝑦2(0) = 1. Note that the right-hand sides of (18a) and (18b) are 

explicitly determined by substituting the previously derived expressions given by (11a) and (11b). To solve the 

above inhomogeneous differential equations exactly, we assume a general solution (combination of 

complementary and particular solution) to the unknown functions 𝑧2(𝑥)and 𝑦2(𝑥) in the form 

𝑧2(𝑥) = 𝑝1𝑒𝑟𝑥 + 𝑝2𝑒2𝑟𝑥 + 𝑝3𝑥𝑒𝑟𝑥 + 𝑝4𝑥 + 𝑝5 (19a) 

and 

𝑦2(𝑥) = 𝑞1𝑒𝑟𝑥 + 𝑞2𝑒2𝑟𝑥 + 𝑞3𝑥𝑒𝑟𝑥 + 𝑞4𝑥 + 𝑞5..(19b) 

The exponent r turns out to satisfy the same characteristic equation as in (9). Upon substituting the proposed 

forms from (19a) and (19b) into (18a) and (18b) and applying boundary conditions 𝑧2(𝑤) = 𝑦2(0) = 1, we 

obtain a system of twelve linear equations with ten unknown coefficients p1, p2, p3, p4, p5, q1, q2, q3, q4, 

and q5. After some algebra, the unknown coefficients are determined and second moments 

of 𝑧2(𝑥) and 𝑦2(𝑥)are obtained. The details of the calculations are omitted. 

Finally, the analytical expression for the excess noise factor for a mixed-carrier initiated avalanche, F(x), is 

obtained from the quantities of z(x), y(x), 𝑧2(𝑥)and 𝑦2(𝑥)as follows: 

𝐹(𝑥) =
<𝐺2(𝑥)>

<𝐺(𝑥)>2 =
1

4
[𝑧2(𝑥)+2𝑧(𝑥)𝑦(𝑥)+𝑦2(𝑥)]

(
1

2
[𝑧(𝑥)+𝑦(𝑥)])2

.(20a) 

Hence, upon substituting the exact expressions for z(x), y(x), 𝑧2(𝑥)and 𝑦2(𝑥) in (20a) we obtain 

𝐹(𝑥) = 2 − {
𝑒−2𝛼(1−𝑘)𝑤−𝑘

𝑒−𝛼(1−𝑘)𝑤−𝑘
}𝑒𝛼(1−𝑘)𝑥 ,(20b) 
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where 𝑘 =
𝛽

𝛼
 and 𝑟 = 𝛽 − 𝛼 ≠ 0. 

The excess noise factor, 𝐹(𝑥), can also be represented in terms of mean gain, 𝑀(𝑥), and k. More precisely, 

𝐹(𝑥) = 𝑘𝑀(𝑥)𝑒2𝛼(1−𝑘)𝑥 + 2(1 − 𝑘𝑒𝛼(1−𝑘)𝑥)

−
1

𝑀(𝑥)
(1 − 𝑘).

.(21) 

The formula in (20b) (or (21)) is the generalization of McIntyre's formula for the excess noise factor to mixed 

injection and it constitutes the first major contribution of this paper. Note that an equivalent form of (20b) (or 

(21)) was previously reported by McIntyre (equation (4) in [15]), following equation (13) in [2], using a different 

method. We believe that the rigorous probabilistic derivation given here is both simpler to follow and more 

direct than the methodology reported in deriving equation (13) in [2]. 

For the case of electron injection (β < α, hence k < 1, and x = 0), (21) collapses to the well-known 

McIntyre's [2] formula: 

𝐹𝑒 = 𝐹(0) = 𝑘𝑀𝑒 + (2 −
1

𝑀𝑒
)(1 − 𝑘).(22a) 

Similarly, for hole injection (β < α, equivalently k < 1, and x = w), (21) becomes 

𝐹ℎ = 𝐹(𝑤) =
𝑀ℎ

𝑘
+ (2 −

1

𝑀ℎ
)(1 −

1

𝑘
).(22b) 

Next, consider the case when k = 0 in (22a) or k = ∞ in (22b). In these cases, we obtain 

𝐹𝑒 = 2 −
1

𝑀𝑒
 (23a) 

and 

𝐹ℎ = 2 −
1

𝑀ℎ
.(23b) 

To address the case when k = 1, we take the limit as k → 1 in (21) and obtain the familiar formula 

𝐹(𝑥) = 𝑀(𝑥) =
1

1−𝛼𝑤
. (24) 

The special-case expressions in (23) and (24) are those as given by (19) and (22) in [20]. 

C. Analytical Expressions for Distributed Mixed-Injection M and F With an Exponential 

Decay Function 
Ideally, pure electron (e.g., for Si with low k) or pure hole (e.g., for InP with high k) edge-injection yields the 

lowest value of F. This can be seen from the expression for F(x) in (21). However, depending on the photon 

absorption profile inside the MR, photogenerated carriers within the MR also contribute collectively to the 

mixed-injection multiplication in a distributed fashion. Thus, for a given APD structure, M and F actually depend 

indirectly on the wavelength of light. In this regard, we present analytical expressions for M and F while taking 

into account different absorption profiles with an exponential decay function within the MR. 

Consider an incident photon that is absorbed in the multiplication region (0 ≤ 𝑥 ≤ 𝑤)with probability 𝑝𝑚. The 

generation rate for mixed carrier injection is proportional to 𝑒−𝛼′𝑥, where 𝛼′ is the material absorption 

coefficient. When the absorption profile is normalized by 𝑝𝑚/ ∫ 𝑒−𝛼′𝑥𝑑𝑥
𝑤

0
, we obtain the probability density 

function (pdf) of the location of absorption within the MR, namely 𝑔(𝑥) =
𝛼′𝑒−𝛼′𝑥

1−𝑒−𝛼′𝑤
. 
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The mean gain for the mixed-carrier initiated avalanche, 𝑀𝑎 =< 𝐺𝑎 >, is obtained from the quantities z(x) 

and y(x) while taking into account the absorption profile within the MR. More precisely, 

𝑀𝑎 = ∫
1

2
[𝑧(𝑥) + 𝑦(𝑥)]𝑔(𝑥)𝑑𝑥

𝑤

0

..(25) 

By inserting the values of 𝑧(𝑥) and 𝑦(𝑥) into (25), we obtain the following analytical expression for the 

distributed injection mean gain: 

𝑀𝑎 =
𝛼′(1−𝑘)(𝑒(−(1−𝑘)𝛼−𝛼′)𝑤−1)

(𝑒−𝛼(1−𝑘)𝑤−𝑘)(1−𝑒−𝛼′𝑤)(−𝛼(1−𝑘)−𝛼′)
.(26) 

Similarly, the second moment of mean avalanche gain for the mixed-carrier initiated avalanche, <G2a>, is 

obtained from the quantities z(x), y(x), 𝑧2(𝑥), and 𝑦2(𝑥) while taking into account the absorption profile within 

the MR: 

< 𝐺𝑎
2 >= ∫

1

4
[𝑧2(𝑥) + 2𝑧(𝑥)𝑦(𝑥) + 𝑦2(𝑥)]𝑔(𝑥)𝑑𝑥

𝑤

0

.(27) 

Moreover, the distributed-injection excess noise factor, 𝐹𝑎(𝑥), with absorption profile is expressed as 

𝐹𝑎 =
<𝐺𝑎

2>

𝑀𝑎
2 ,(28) 

which reduces to the formula as shown at the bottom of this page. 

𝐹𝑎 =

𝛼′

1 − 𝑒−𝛼′𝑤
[{

2(𝑒(−2𝛼(1−𝑘)−𝛼′)𝑤 − 1)

−2𝛼(1 − 𝑘) − 𝛼′ } − {
𝑒−2𝛼(1−𝑘)𝑤 − 𝑘
𝑒−𝛼(1−𝑘)𝑤 − 𝑘

} {
(1 − 𝑒(−𝛼(1−𝑘)−𝛼′)𝑤)

𝛼(1 − 𝑘) + 𝛼′ }]

{
𝛼′

1 − 𝑒−𝛼′𝑤

(𝑒(−𝛼(1−𝑘)−𝛼′)𝑤 − 1)

−𝛼(1 − 𝑘) − 𝛼′ }

2  

The formula in (29) is the generalization of McIntyre's formula for the excess noise factor to distributed injection 

and it constitutes the second major contribution of this paper. 

SECTION III. Results 
The behavior of F(x) as a function of M(x) is shown in Fig. 1, which results from the exact analytical formula 

shown in (21). Six cases of k and three cases of relative mixed-injection parameter (x/w) are considered. 

The k values are 0.0001, 0.001, 0.01, 0.1, 0.5, and 0.9, and the x/w values are 0, 0.5 and 1. As expected, the 

excess noise factor shows strong dependence on mixed-injection location for different values of k. In general, 

the excess noise factor is at a minimum for materials with a small value of k and edge electron-injection (or very 

large k for edge hole-injection), namely when the parent electron (hole) is injected at the appropriate edge of 

the multiplication region. However, in contrast to the case of edge parent-electron injection, even when k is very 

low, i.e., k = 0.0001, the excess-noise factor behavior shows dramatic increase with the mixed injection location 

(x/w ranging from 0 to 1) within the MR, as seen from Fig. 1. It turns out that mixed injection plays an important 

role in the behavior of F(x) as a function of M(x) as well as injection location and k values. 
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Fig. 1. Excess-noise factor, F(x), as a function of mean gain, M(x). Six cases of hole-to-electron ionization coefficient ratio (k) 
and three cases of relative mixed injection parameter (x/w) are considered. The k values are 0.0001, 0.001, 0.01, 0.1, 0.5, 
and 0.9 and x/w values are 0, 0.5 and 1. Excess noise factor calculated using CM approach is compared with that calculated 
using ENM for k = 0.1, k = 0.5 and k = 0.9, respectively. For ENM, the values of normalized dead space (d/w) are chosen to 

be 0, 0.01, and 0.1 and are represented by  ,  , and  , respectively. In addition, red, green, and blue lines 
represent relative mixed injection parameter (x/w) with the values of 0, 0.5 and 1, respectively. 

 

For validation purposes, the excess noise factor calculated using the formula in (21) is also compared with that 

calculated using exact numerical method (ENM) [10] for kvalues of 0.1, 0.5 and 0.9, respectively (see Fig. 1); the 

good agreement between the two approaches is evident. 

In summary, the excess noise factor increases dramatically with the mean gain when mixed injection is allowed 

within the MR. More precisely, F(x) increases with the location of the mixed injection and k. For 

example, F increases by a factor of 1.4 at M = 20 for k = 0.0001 when edge injection is replaced by mixed-

injection at x/w = 0.5. In addition, even when k is very low (∼0.0001), F begins to increase dramatically beyond a 

certain threshold value of M = 10 when mixed injection is allowed. Moreover, the mean gain threshold at 

which F becomes large is determined as a function of the location of mixed injection and k. The results show 

that relying on the k value alone, as we were taught by McIntyre's theory, can be very misleading when mixed 

injection is a factor. 

The pdf, g(x), of the photon absorption location as a function of absorption depth (x) is shown in Fig. 2. The 

exponential absorption profiles are arbitrarily chosen from narrow to flat, based on the 𝛼′ values from 10 to 

0.01. The behavior of the excess noise factor as a function of mean gain for different absorption profiles is 

shown in Fig. 3, which results from the exact analytical formulas shown in (26) and (29). Six cases of k and four 

cases of absorption profiles are considered. In addition, McIntyre's k lines (i.e., x/w = 0) are shown using the 

dotted lines with k assuming the values of 0.0001, 0.001, 0.01, and 0.1 to 1 with an increment of 0.1. 
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Fig. 2. Probability density function (PDF) of the photon absorption location as a function of the absorption location (x) for 
different absorption coefficient (a′) from flat to narrow with an exponential decay function. 

 

 
Fig. 3. Distributed-injection excess-noise factor (Fa) as a function of distributed-injection mean gain (Ma) for different 
absorption profiles with an exponential decay function. Six cases of hole-to-electron ionization coefficient ratio (k) are 
considered. The k values are 0.0001, 0.001, 0.01, 0.1, 0.3 and 0.4. In addition, McIntyre's k (β/α) lines (i.e., x/w = 0) are 
shown using the dotted lines: 0.0001, 0.001, 0.01 and 0.1 to 1 with an increment of 0.1. 

 

Fig. 3 shows that excess noise factor increases with the narrow to flat absorption profile. For 

example, 𝐹𝑎 increases by a factor of 2.35 at 𝑀𝑎 = 20 for k = 0.0001 when a very narrow absorption profile (𝛼′ =

10) is replaced by a nearly flat profile (𝛼′ = 0.01). In addition, even when k is very low (∼0.0001), 𝐹𝑎 begins to 

increase dramatically beyond a certain threshold value of 𝑀𝑎 = 2.5 if mixed injection is allowed—a behavior 

that is very different from that seen in the case of edge injection. Moreover, the mean gain threshold at 

which 𝐹𝑎 becomes large is governed by the absorption profile and k. Additionally, for a particular k value, the 

shape of the distributed 𝐹𝑎 versus the distributed 𝑀𝑎 is now very different from what McIntyre formula predicts, 

as shown in Fig. 3. 

Overall, McIntyre's F either underestimates or overestimates the distributed 𝐹𝑎, depending on the photon-

absorption profile and value of k. For example, as shown in Fig. 3(a), McIntyre's F at M = 20 with low value 

of k (∼0.0001), underestimates the distributed 𝐹𝑎 by the factors of 0.92, 0.81, 0.53, and 0.42 for narrow to 

nearly flat absorption profiles with 𝛼′ values of 10, 5, 1, and 0.01, respectively. However, for high value of k (k = 
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0.1 in Fig. 3(d)), McIntyre's F at M = 20 overestimates the distributed 𝐹𝑎  by the factors of 1.29 and 1.61 for the 

narrow absorption profiles with 𝛼′ values of 5 and 10, respectively. At the same time, for broader absorption 

profiles associated with the same k value of 0.1, McIntyre's F at M = 20 underestimates the distributed 𝐹𝑎 by the 

factors of 0.5 and 0.26 for 𝛼′ values of 1 and 0.01, respectively. Note that the small values of k of 0.01 or lower 

are important from a practical standpoint as there are several bulk materials that exhibit this type of behavior, 

including Si [4], [5] InAs [6], and AlAsSb [7]. In addition, high values of k (>0.1) are also important for submicron 

multiplication regions (e.g., Si pn-junction APDs), where the very high electric fields (>255 kV/cm) cause an 

increase in the k value [8], [9]. For example, the value of k for a p-n junction Si APD for typical operation is in the 

range of 0.1 – 0.56 for the high field values in the range of 255 – 900 kV/cm [9]. As seen from Fig. 3(f), for high 

values of k(∼0.4), 𝐹𝑎 exhibits a dramatic increase (by a factor of 6.6 at 𝑀𝑎 = 20) from a narrow absorption 

profile (𝛼′ = 10) to a nearly flat profile (𝛼′ = 0.01). Such increase is very dramatic for a k value of 0.4, as 

compared to an increase by a factor of 2.35 for a low kvalue of 0.0001 with similar absorption profiles. 

In summary, our analytical results indicate that McIntyre's edge-injection formula for Fmay either underestimate 

or overestimate the distributed-injection 𝐹𝑎, depending on the photon-absorption profile and the value of k. 

Hence, usage of both k and the photon-absorption distribution profile in the distributed injection formula 

for 𝐹𝑎 can be critical in the reliable prediction of F in many real devices that involve mixed injection. 

SECTION IV. Experimental Validation of the Theory 
McIntyre's edge-injection formula for F can be inaccurate when applied to APDs with submicron multiplication 

region widths (e.g., <500 nm) and high values of k (e.g., >0.12) [4] Si, [8], [9]Si, [11]GaAs, [12]Si. One of the main 

reasons for such inaccuracy is the presence of mixed injection. For example, McIntyre's formula 

for F overestimated the measured F (at 830 nm excitation with k = 0.12) for a n+-p-π-p+ reach-through Si APD [4]. 

Other examples are low-noise CMOS APDs with a 470 nm multiplication region width [8] designed for the 

380 nm and 600 nm excitations. For these devices, it was shown that McIntyre's F significantly overestimated 

the measured F for a high value of k (∼1). In this case, the prediction error was attributed to a combination of 

the distributed carrier injection and the dead-space effect in the thin multiplication region [8]. 

Recently, the authors have reported calculated and measured excess noise factors for a speed-optimized, large 

area N-well/P-sub APD, which was fabricated in 0.13-μm CMOS process [9]. Here, too, F deviated from that 

provided by McIntyre's classical excess-noise formula. To obtain an accurate prediction of F, the authors 

resorted to calculating F using wavelength-dependent DSMT model under mixed-injection with an extensive 

numerical method [9]. Specifically, in addition to accounting for the electron-initiated avalanche multiplication 

process, hole injection and mixed-carrier injection were also taken into account in the recursive DSMT model to 

calculate M and F numerically while taking into account the absorption profile of N-well/P-sub CMOS APD [9]. 

The excess noise factor for this device was calculated using non-local Si ionization coefficients, and the results 

are shown in Fig. 4 (reproduced from [9]) with a dash-dot line. 



 
Fig. 4. Distributed-injection excess-noise factor (Fa) as a function of distributed-injection mean gain (Ma) for the N-well/P-
sub CMOS APD. The triangles are the measured values reproduced from [9]using a 633 nm He-Ne laser. The solid and 
dotted lines indicate calculated results using exact analytical formulas under total mixed-injection and edge-electron 
injection respectively. 

 

Here we use our derived exact analytical formula for 𝐹𝑎 under distributed injection with zero dead space to 

determine F for the N-well/P-sub APD and compare to the measured F, as shown in Fig. 4. The triangles are the 

measured values of F reproduced from [9]using a 633 nm He-Ne laser. The excess noise factor is calculated using 

the exact analytical formula under total mixed-injection (electron, hole and distributed injection) while taking 

into account local ionization coefficients of Si [21]; the results are shown in the figure by the solid line. The 

calculation is based on using equations (4) and (8) in [9], except that we use our analytical expressions 

developed in this paper with zero dead space. The k value was calculated to be approximately 0.4. Note that the 

value of k for silicon is much larger at very high electric fields present in very thin multiplication regions (e.g., 

<400 nm [22]–[23][24][25][26][27] than that for bulk silicon) as shown in Fig. 1 in [28]. Fig. 4 shows that the 

calculated F (solid line) are in good agreement with the measured values for the N-well/P-sub APD. 

The calculated F using McIntyre's edge-injection formula is shown in Fig. 4 by the dotted line. The comparison 

between the excess-noise factors corresponding to McIntyre's formula (edge electron injection) and our 

analytical mixed-injection formula shows that McIntyre's prediction of F overestimates both the measured and 

the calculated total mixed-injection F. This is also evident from Fig. 3(f), where McIntyre's F (for a k value of 0.4) 

overestimates the distributed 𝐹𝑎 for narrow absorption profiles (e.g., 𝛼′ = 5 and 10). In addition, the 

calculated F using the DSMT model for edge electron injection is shown in Fig. 4 by the dash line. (The k value 

turns out to be approximately 0.4). Note that the calculated F for both the analytical and numerical cases are 

slightly higher than the measured values. This could be due to the presence of non-uniform electric fields in the 

multiplication region of N-well/P-sub APD [9]. Additionally, dead space, which is ignored in the 

mixed/distributed injection formulas in this paper, also plays an important role to calculate F numerically with 

accuracy for a thin multiplication region of 270 nm for the N-well/P-sub APD as shown in [9]. This is why the 

DSMT (edge-/mixed-injection) is showing better agreement with measurements than that produced by the 

closed-form edge-injection/distributed-injection formulas; nonetheless, the latter offers a drastic computational 

simplification compared to the DSMT method. In addition, dead space has a dominant effect on 

calculating F using the DSMT as compared to edge-/distributed- injection for the thin N-well/P-sub APD 

considered here. Moreover, the calculated F using the simplified closed-form formulas show that distributed 

injection provides improved agreement with measurements as compared to the edge-electron injection formula 

for F. 
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SECTION V. Conclusion 
Exact and easy-to-use analytical formulas for the excess noise factor are derived for mixed carrier injection and 

distributed-carrier injection APDs as shown in (21) and (29), respectively. It is our belief that the rigorous 

probabilistic derivation given here to obtain (21) is both simpler to follow and more direct than the McIntyre's 

equation (4) in [15], following (13) in [2], using a different and restricted technique. The analytical results are in 

excellent agreement with those calculated using the exact, numerically implemented DSMT method [10]. The 

results are also in good agreement with experiments [9]. The newly-derived formulas reveal that in contrast to 

the case of edge electron injection, even with a small level of hole ionization (e.g., small k ∼ 0.0001), the excess 

noise behavior exhibits a dramatic increase when mixed injection is allowed. It is also shown that the 

distributed-injection excess noise factor increases relative to the predictions offered by the classical McIntyre's 

theory, which assumes edge injection, depending on the absorption profile as it ranges from narrow to flat 

within the multiplication region. Comparisons show that McIntyre's predictions of the excess noise factor either 

underestimate or overestimate the distributed-injection 𝐹𝑎, depending on the photon absorption profile and the 

value of k. Hence, relying on the k value alone in predicting the excess noise factor can be very misleading in 

cases when mixed injection is occurring. Therefore, the simple formulas reported in this paper provide a 

valuable tool for optimizing the design of APD structures that exhibit even small levels of photon absorption in 

their multiplication regions. 
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