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Information theoretic approach for assessing 
image fidelity in photon-counting arrays  
 

Srikanth R. Narravula 
Center for High Technology Materials and Department of Electrical & Computer Engineering, The University of 
New Mexico, Albuquerque, NM  
Majeed M. Hayat 
Center for High Technology Materials and Department of Electrical & Computer Engineering, The University of 
New Mexico, Albuquerque, NM  
Bahram Javidi 
Department of Electrical & Computer Engineering, The University of Connecticut Storrs, CT  

Abstract 
The method of photon-counting integral imaging has been introduced recently for three-dimensional object 
sensing, visualization, recognition and classification of scenes under photon-starved conditions. This paper 
presents an information-theoretic model for the photon-counting imaging (PCI) method, thereby providing a 
rigorous foundation for the merits of PCI in terms of image fidelity. This, in turn, can facilitate our understanding 
of the demonstrated success of photon-counting integral imaging in compressive imaging and classification. The 
mutual information between the source and photon-counted images is derived in a Markov random field setting 
and normalized by the source-image’s entropy, yielding a fidelity metric that is between zero and unity, which 
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respectively corresponds to complete loss of information and full preservation of information. Calculations 
suggest that the PCI fidelity metric increases with spatial correlation in source image, from which we infer that 
the PCI method is particularly effective for source images with high spatial correlation; the metric also increases 
with the reduction in photon-number uncertainty. As an application to the theory, an image-classification 
problem is considered showing a congruous relationship between the fidelity metric and classifier’s 
performance. 

1. Introduction 
Three-dimensional (3D) imaging techniques have the potential for diverse applications in various fields, including 
medical, education, entertainment, commercial electronics, defense, communication, and manufacturing [1–5]. 
One of the promising methods for passive 3D sensing and visualization is integral imaging, which is based on the 
principle of integral photography [6–20]. In the integral imaging technique, in addition to irradiance, directional 
information of the rays is recorded by acquiring two-dimensional elemental images (2D projections) from 
different perspectives of the scene, thereby capturing depth information. Unlike holography, integral imaging 
can capture and reconstruct true 3D color images under ambient or incoherent light without the need for using 
viewing devices. 

The motivation for this paper comes from a special class of integral imaging, called photon-counting integral 
imaging, where images are formed by means of a photon-counting array. Applications for photon-counting 
integral imaging [21] include, low light level imaging [22, 23] single photon emission tomography [24] and 
astronomical imaging [25]. Photon counting for 3D object recognition, classification, and visualization with 
integral imaging have been reported in [26–28]. 

It is intriguing that both 2D and 3D photon counting imagery capture significant portions of the information in an 
image even under photon-starved conditions, as demonstrated in [26–28]. This feature has become particularly 
evident and useful in the context of image classification, where very good performance is observed even when 
very few photons per pixel are available [26–28]. 

If we consider the physical process associated with a photon-counting imaging (PCI) system, we can identify 
three main components in the system (see Fig. 1). The first component is the true intensity image of the object. 
The second component is the transformation rule that governs the conversion of an intensity image into a 
stochastic stream of photons in space and time. The latter is characterized by a deterministic quantity called the 
photon-flux density [29]. The photon-flux density, ϕ, is the average number of photons per unit time and per 
unit area. It is well known [29] that for a coherent light source, the actual number of photons in the stochastic 
photon stream, present in an infinitesimal time-area rectangle dtdA, is a Poisson random variable with mean 
value ϕdtdA. The stochastic photon streams considered in PCI systems typically undergo severe random-
deletion (or thinning) of photons due to absorption and scattering through the transmission medium. The third 
and last component of the PCI systems is the photon-counting array, which counts the photons impinging on 
each detector element. The totality of the photon counts in the array represents a degraded version of the 
source image, as seen by comparing the output and source images in Fig. 1. A key question is how to quantify 
the loss in image content starting from the object and ending with the degraded image generated by the 
photon-counting array. 

In light of the above three components of the PCI systems, we can identify the “source,” “channel,” and 
“output” of a communication system. As such, we can view the PCI problem shown in Fig. 1 as an information-
theoretic problem. More precisely, the “source” is the ensemble of all possible intensity images of interest, 
which are selected according to a prescribed probability distribution function. The “output” is the ensemble of 
all digital photon-count images where the pixel values are non-negative integers representing the photon 
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counts. The “channel” is simply the conditional probability that an output image is generated given that a 
specific source image was used. 

With the above information-theoretic description, we observe that the mutual information between the source 
and the output of the aforementioned communication system is a measure of the change in the information 
present in an image prior to transmission and that present at the destination [30, 31]. Therefore, we can use the 
mutual information as a measure for the “similarity” between the source and output imagery. In particular, the 
mutual information can be utilized to quantify the preservation in image content in photon-counting imagers. 
More specifically, as a relative metric for image degradation we can consider the mutual information between 
the source and output normalized by the source’s entropy, which yields a number between zero and unity, 
corresponding to complete loss of information and full preservation of information, respectively. For example, if 
the “degraded” image is statistically independent of the true image, then the metric returns a value of zero; on 
the other hand, if the “degraded” image is a deterministic and invertible transformation of the true image, then 
the metric will return a value of one. In the PCI problem considered in this paper, the transformation from the 
true image to the (degraded) elemental image is stochastic since intensity values are transformed into stochastic 
photon numbers, as dictated by the quantum nature of light. Moreover, the transformation that maps intensity 
to a photon-steam is generally non-invertible. 

In this paper, we will use the normalized mutual information metric applied to 2D elemental images in the PCI 
process to investigate the role of spatial correlation and photon statistics in how well image-content is 
preserved. Nevertheless, this model and formulation can be applied to the 3D images once we have modeled a 
3D image scene in terms of the corresponding elemental images. In such a model, we need to consider the 
depth in addition to the intensities at a particular pixel location. 

 
Fig. 1. Schematic of the PCI system considered in this paper. The figure shows a source image, the 
transformation rule and the output image. These components of the PCI system can be identified as source, 
channel and output of a communication system. In most scenarios of interest, the output image is a sparse, 
binary array since the photon stream is very weak. 

2. Problem formulation 
2.1. Probabilistic model for PCI under Poisson photon statistics 

Consider a stochastic column vector X whose entries, Xi, i = 1, …, n, are discrete random variables in the 
interval [0,1] representing the reflectance of some unknown object or an unknown digital image. (For 
example, the vector X can be thought of as a lexicographic representation of a digital image.) 
Throughout this paper, we will refer to X as the source image. In undertaking a digital image as the 
source image, we have implicitly assumed that the scene is imaged using an imaging system with a 
finite spatial resolution; as such, it is sufficient to consider a digital image sampled from the 
continuous-space acquired image with the sampling rate satisfying the Nyquist criterion consistent 
with the spatial resolution of the imaging system. (The quantization of levels is merely for simplicity.) 
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A probing beam carries an average photon flux of λε photons per second per pixel, where λ is the 
photon flux of the un-attenuated light and ε ∊ [0,1] is an attenuation factor that we will use as a 
control parameter in this study. Clearly, the average photon flux is reduced to Xiλε upon reflection of 
the ith pixel of the image since each photon is reflected with a probability equal to the reflectance, Xi, 
associated with the ith pixel. The reflected light is detected using a detector array, operating in the 
photon counting mode, with quantum efficiency η; i.e., each photon is detected with probability η. 
Background stray light, dark-current noise, read-out noise, and other forms of noise (other than 
quantum noise) are ignored in this analysis. 

The ith element of the detector array gives a measurement of the number of photons, Yi, detected 
during integration time τ. According to the laws of photon optics for coherent light [29], conditional on 
a particular realization of Xi, say Xi = xi, Yi is a Poisson random variable with mean value ηxiλετ ≡ xiεNp, 
where Np = ηλτ is the mean number of photons per pixel and per unit integration time. Therefore, the 
conditional probability mass function of Yi given that Xi = xi can be written as 

(1) 

𝑃𝑃𝑌𝑌𝑖𝑖∣𝑋𝑋𝑖𝑖(𝑦𝑦𝑖𝑖 ∣∣ 𝑥𝑥𝑖𝑖 ) =
�𝑁𝑁𝑝𝑝𝑥𝑥𝑖𝑖𝜀𝜀�

𝑦𝑦𝑖𝑖𝑒𝑒−𝑁𝑁𝑝𝑝𝑥𝑥𝑖𝑖𝜀𝜀

𝑦𝑦𝑖𝑖!
,𝑦𝑦𝑖𝑖 = 0,1,2, …. 

(Notation: We refer to P{Yi = yi|Xi = xi}, the probability that Yi = yi given that Xi = xi, as PYi|Xi(yi|xi); 
similarly, we refer to P{X = x} as P x(x), etc.) We now define Y as a stochastic array whose entries are 
the integer-valued random variables Yi (i = 1, …,n); this stochastic array represents the photon-count 
array. To find the probability mass function of the random-count array Y, we observe that conditional 
on the gray levels X = x of the totality of pixels, where x is an array with entries x 1, …, xn, the photon-
count random variables Yi corresponding to different pixels are statistically independent. Hence, it 
follows that the conditional probability mass function of the photon-count array Y given X = x is 

(2) 

𝑃𝑃𝑌𝑌∣𝑋𝑋(𝑦𝑦 ∣∣ 𝑥𝑥 ) = �𝑃𝑃𝑌𝑌𝑖𝑖∣𝑋𝑋𝑖𝑖(𝑦𝑦𝑖𝑖 ∣∣ 𝑥𝑥𝑖𝑖 ),
𝑛𝑛

𝑖𝑖=1

 

where y ≜ [y 1, …,yn]′ and for i = 1, …,n, yi is a nonnegative integer. Using the law of total probability, 
we can write the probability mass function P Y(y) of the output image Y as 

(3) 

𝑃𝑃𝑌𝑌(𝑦𝑦) = �𝑃𝑃𝑋𝑋(𝑋𝑋)𝑃𝑃𝑌𝑌∣𝑋𝑋(𝑦𝑦 ∣∣ 𝑥𝑥 ),
𝑥𝑥

 

where P X(x) is the probability mass function of the source image X, and the summation is over all 
realizations x of X.  
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Approximation under photon-starved conditions: In situations when the attenuation factor e is very 
small, the photon counts per pixel are either 0 or 1 with high probability [27]. Thus, the probability 
mass function of the photon count in each detector element can be approximated by a Bernoulli 
(binary) law. The Bernoulli law is also applicable to the scenario when the photon count is hard-limited 
(or thresholded) to 0 or 1. Under the Bernoulli assumption, the probability mass function of the photon 
count Yi, conditional on the pixel’s gray level Xi = xi, takes the simpler form of 

(4a) 

𝑃𝑃𝑌𝑌𝑖𝑖∣𝑋𝑋𝑖𝑖( 0 ∣∣ 𝑥𝑥𝑖𝑖 ) = 𝑒𝑒−𝑁𝑁𝑝𝑝𝑥𝑥𝑖𝑖𝜀𝜀 , 

(4b) 

𝑃𝑃𝑌𝑌𝑖𝑖∣𝑋𝑋𝑖𝑖( 1 ∣∣ 𝑥𝑥𝑖𝑖 ) = 1 − 𝑒𝑒−𝑁𝑁𝑝𝑝𝑥𝑥𝑖𝑖𝜀𝜀 . 

2.2. Probabilistic model for PCI under alternative photon statistics 

In order to understand the role of the Poisson nature of photon numbers on the normalized mutual 
information, we considered two alternative models for the photon-counting channel: (1) the binomial-
distribution model, and (2) the geometric-distribution model. In the former case, the probability mass 
function of Yi conditional on Xi is binomial; in the latter case, the probability mass function is geometric 
(exponential). For consistency, we have assumed the same mean value for all three models. The 
binomial model is suitable in modeling photon statistics of non-classical light—when the probing light 
is maximally amplitude squeezed [32]. An amplitude-squeezed state can result in narrowing the 
distribution of the photon number, viz., reducing the photon-number uncertainty and hence reducing 
quantum noise below the classical shot-noise limit (associated with light with Poisson photon 
statistics). The geometric distribution, also termed the Boltzmann distribution, is suitable for modeling 
the photon statistics of thermal light [29]. 

Binomial distribution model: With the application of the binomial model to the photon-count variable, 
Yi, conditional on Xi = xi (i = 1, …,n), Yi is distributed according to a binomial probability mass function 
with mean Npxiε. Denoting the parameters of the binomial distribution as n and p, we must therefore 
set np = Npxiε. This yields 

(5) 

𝑃𝑃𝑌𝑌𝑖𝑖∣𝑋𝑋𝑖𝑖(𝑦𝑦𝑖𝑖 ∣∣ 𝑥𝑥𝑖𝑖 ) = �
𝑛𝑛
𝑦𝑦𝑖𝑖
� 𝑝𝑝𝑦𝑦𝑖𝑖(1− 𝑝𝑝)𝑛𝑛−𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑖𝑖 = 0,1,2, … . ,𝑛𝑛, 
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Fig. 2. This figure shows Poisson, geometric and binomial probability mass functions. The various parameters used are λ = 4 
for Poisson, p = 0.2 for geometric, and n = 20, p = 0.2 for binomial. In all three cases the mean value is 4. 

where p = Npxiε/n is a parameter between 0 and 1. The case p = 1 corresponds to maximal amplitude 
squeezing for which the photon number is deterministic and equal to Npxiε. Note also that as p 
approaches 0 (or n → ∞), this binomial distribution converges to a Poisson probability mass function 
with mean Npxiε. Hence, the Poisson model represents the limiting case of the binomial model. 

For the case when the photon count is hard-limited to 0 or 1, we obtain 

(6a) 

𝑃𝑃𝑌𝑌𝑖𝑖∣𝑋𝑋𝑖𝑖( 0 ∣∣ 𝑥𝑥𝑖𝑖 ) = (1 − 𝑝𝑝)𝑁𝑁𝑝𝑝𝑥𝑥𝑖𝑖𝜀𝜀𝑝𝑝−1  
(6b) 

𝑃𝑃𝑌𝑌𝐼𝐼∣𝑋𝑋𝑖𝑖( 1 ∣∣ 𝑥𝑥𝑖𝑖 ) = 1 − (1 − 𝑝𝑝)𝑁𝑁𝑝𝑝𝑥𝑥𝑖𝑖𝜀𝜀𝑝𝑝−1 . 

Geometric distribution model: With the application of th geometric model to the photon-count 
variable, Yi, conditional on Xi = xi (i = 1, …,n), Yi is distributed according to a geometric probability mass 
function with mean Npxiε. Denoting the parameter of the geometric distribution as p,we must 
therefore set (1 - p)/p = Npxiε, yielding p = 1/(Npxiε+1) and 

(7) 

𝑃𝑃𝑌𝑌𝑖𝑖∣𝑋𝑋𝑖𝑖(𝑦𝑦𝑖𝑖 ∣∣ 𝑥𝑥𝑖𝑖 ) =
1

𝑁𝑁𝑝𝑝𝑥𝑥𝑖𝑖𝜀𝜀 + 1�
𝑁𝑁𝑝𝑝𝑥𝑥𝑖𝑖𝜀𝜀

𝑁𝑁𝑝𝑝𝑥𝑥𝑖𝑖𝜀𝜀 + 1�
𝑦𝑦𝑖𝑖

,𝑦𝑦𝑖𝑖 = 0,1,2, …. 

For the case when the photon count is hard-limited to 0 or 1, we obtain 

(8a) 



𝑃𝑃𝑌𝑌𝑖𝑖∣𝑋𝑋𝑖𝑖( 0 ∣∣ 𝑥𝑥𝑖𝑖 ) =
1

1 + 𝑁𝑁𝑝𝑝𝑥𝑥𝑖𝑖𝜀𝜀
, 

(8b) 

𝑃𝑃𝑌𝑌𝑖𝑖∣𝑋𝑋𝑖𝑖( 1 ∣∣ 𝑥𝑥𝑖𝑖 ) =
𝑁𝑁𝑝𝑝𝑥𝑥𝑖𝑖𝜀𝜀

1 + 𝑁𝑁𝑝𝑝𝑥𝑥𝑖𝑖𝜀𝜀
. 

The probability mass functions from the three models are shown in Fig. 2. 

Next, we use the PCI image-degradation probabilistic model described in this section to define a metric 
for the quality of image transmission in the PCI system based upon the mutual information between 
the input X and output Y. 

2.3. Normalized mutual-information metric 

The entropy H(X) measures the amount of information conveyed in units of “bits,” on average, by a 
random vector X [30]. The mutual information, I(Y;X), is a measure of amount of information that one 
random vector, Y, contains about another random vector, X. The normalized mutual information, 
denoted by ρ, is defined as 

(9) 

𝜌𝜌 =
𝐼𝐼(𝑌𝑌;𝑋𝑋)
𝐻𝐻(𝑋𝑋) . 

It can be shown that 0 ≤ ρ ≤ 1 [30]. Moreover, ρ = 1 whenever Y is a deterministic, one-to-one function 
of X. In particular, when Y can always be unambiguously transformed back to X, the parameter ρ is at 
its maximum. The other extreme case is when X and Y are statistically independent, in which case ρ = 0 
[30]. In this paper use the terms normalized mutual information and fidelity metric interchangeably. 

2.4. A classification example 

Now we consider a classification example to show the application of the normalized mutual 
information metric defined in the previous section 2.3. We considered a 128 × 128 “line image”, X, as 
the input. The slope of the line, s, takes values from the set {-4, -3, -2, -1, 1, 2, 3, 4} uniformly and the 
gray level of the pixels representing the line is assumed to be 255. We then added independent and 
identically distributed uniform noise, K, taking values in the interval [0,k], k ∊ [0,255], to the input 
image, X. For increasing values of k, the variance of the noise that is added to the input increases and 
we generated different input images with varying spatial correlation. Conditional on the slope, s, the 
input image pixels are independent of each other, 

(10) 
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𝑃𝑃𝑋𝑋|𝑠𝑠(𝑋𝑋|𝑠𝑠) = ��𝑃𝑃𝑋𝑋𝑖𝑖,𝑗𝑗|𝑠𝑠

128

𝑗𝑗=1

128

𝑖𝑖=1

�𝑥𝑥𝑖𝑖,𝑗𝑗�𝑠𝑠�. 

We then simulated the channel using Eq. (4) to generate the photon-counted binary image Y. With the 
help of Eq. (2), we note that 

(11) 

𝑃𝑃𝑌𝑌|𝑠𝑠(𝑌𝑌|𝑠𝑠) = ��𝑃𝑃𝑌𝑌𝑖𝑖,𝑗𝑗|𝑠𝑠

128

𝑗𝑗=1

128

𝑖𝑖=1

�𝑦𝑦𝑖𝑖,𝑗𝑗�𝑠𝑠�. 

The classification problem is then to find out whether the slope, s, of the line in the input “line image”, 
X, is positive or negative based on our observation Y. The classification is based upon the best least-
square-error fit of a line to the noisy observation Y. For a particular noise variance determined by k, the 
classifier is run for 10,000 times and we estimate the classification error and we repeat the simulation 
for different values of k. As we can see in Table 1 and from Fig. 4, the classification error increases as 
we increase the noise variance, which is expected. In addition, we find that ρ decreases when the 
classification error increases. In other words, the fidelity metric decreases as the spatial correlation in 
the input image decreases. Hence, we find that there is a congruous relation between the fidelity 
metric and the classifier’s performance. This observation indeed echoes the role of Shannon’s 
information (and channel capacity) in detection error in communication systems. 

3. Results 

In all of our calculations that follow we have used Markov models for the source image X and further 
adopting the hard-limited model for the photon counts at the output. 

3.1. One-dimensional case: Markov-chain model 

To evaluate ρ, we need a model for the source probability distribution that can capture the correlation 
between the pixels. In this subsection we consider a one-dimensional image, represented by X 1,…,Xn, 
which obeys a Markov-chain model. More precisely, the conditional probability 
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Fig. 3. Figure showing the output 128×128 photon-counted array, where the photon counts are represented by the symbols 
‘*,’ and the best-fit estimate of the line from the photon counts. The value of k is 5 and the corresponding noise variance is 
2.08. Here Npε = 0.3. 

 
Fig. 4. Figure showing the fidelity metric, ρ, and the classification error versus the noise variance in the input image. The 
classifier is run for 10,000 times for each value of noise variance to average out the classification error. Here Npε = 0.3. 
 
Table 1. Table showing the relationship between the variance of the uniform noise in the input image, the 
normalized mutual information, ρ, and the average error of classification. 

Noise variance  ρ  Average classification error  
0.34 0.1157 0 
0.75 0.1062 0.2218 



3.00 0.0969 0.2218 
6.75 0.0921 0.2516 
18.75 0.0819 0.2912 
27.00 0.0766 0.2979 
33.34 0.0732 0.3015 

 

mass function of a pixel given the value of an adjacent pixel is independent of all the other pixels prior 
to the adjacent pixel. Mathematically, we have 

(12) 

𝑃𝑃{𝑋𝑋𝑖𝑖+1 = 𝑥𝑥𝑖𝑖+1 ∣∣ 𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 , …𝑋𝑋1 = 𝑥𝑥1 } = 𝑃𝑃{𝑋𝑋𝑖𝑖+1 = 𝑥𝑥𝑖𝑖+1 ∣∣ 𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 }, 𝑖𝑖 = 1, … ,𝑛𝑛 − 1. 

For simplicity we will assume that each pixel Xi takes values from the set {0,1, …,I}. The model 
described in Eq. (12) results in correlation between neighboring pixels, and the degree of correlation 
depends upon the specification of the transition probabilities P{X i+1 = x i+1 |Xi = xi}. In this paper, we will 
assume the following form for the transition probabilities: 

(13) 

𝑃𝑃{𝑋𝑋𝑖𝑖+1 = 𝑥𝑥𝑖𝑖+1 ∣ 𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖}

= �
max�𝑚𝑚𝑥𝑥𝑖𝑖+1 − 𝑚𝑚𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑥𝑥𝑖𝑖 , 0� , for𝑥𝑥𝑖𝑖+1 = 0,1, … 𝑥𝑥𝑖𝑖
max�−𝑚𝑚𝑥𝑥𝑖𝑖+1 − 𝑚𝑚𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑥𝑥𝑖𝑖 , 0� , for𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + 1, … , 𝐼𝐼

, 

where m is the spatial correlation index and cxi is selected so that P{X i+1 = t|Xi = xi} is a probability mass 
function (as a function of t) for every xi; more precisely, 

(14) 

𝑐𝑐𝑥𝑥𝑖𝑖 =
1

𝐼𝐼 + 1 �𝑚𝑚𝑥𝑥𝑖𝑖
2 − 𝑚𝑚𝐼𝐼𝑥𝑥𝑖𝑖 +

𝑚𝑚
2 𝐼𝐼(𝐼𝐼 + 1) + 1�. 

Figure 5 depicts representative examples of the transition probabilities P{X i+1 = x i+1 |Xi = xi} (for xi = 4); 
these probability mass functions signify the correlation present between X i+1 and its neighbor Xi. As the 
correlation index increases from one curve to another, the spatial correlation increases between 
neighboring pixels. As such by changing the correlation index m, we generate a range of correlation 
degrees among pixels, extending from independence (m = 0) to perfectly correlated (m = ∞). 

Finally, the Markov model allows us to write the probability mass function, P X(x), for the image in 
terms of the transition probabilities and the probability mass function of X 1, which can be chosen 
arbitrarily, 

(15) 
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𝑃𝑃𝑥𝑥(𝑥𝑥) = 𝑃𝑃{𝑋𝑋𝑛𝑛 = 𝑥𝑥𝑛𝑛 ∣ 𝑋𝑋𝑛𝑛−1
= 𝑥𝑥𝑛𝑛−1}𝑃𝑃{𝑋𝑋𝑛𝑛−1 = 𝑥𝑥𝑛𝑛−1 ∣∣ 𝑋𝑋𝑛𝑛−2 = 𝑥𝑥𝑛𝑛−2 } …𝑃𝑃{𝑋𝑋2 = 𝑥𝑥2 ∣∣ 𝑋𝑋1 = 𝑥𝑥1 }𝑃𝑃𝑋𝑋1(𝑥𝑥1). 

3.2. Discussion of the normalized mutual information metric 

We now evaluate the normalized mutual information metric, ρ, assuming the above described Markov-
chain model for different values of the correlation index, m, and also for different channel probability 
distributions. In our calculations we have assumed that the first pixel, X 1, is uniformly distributed. 
Figure 6 shows ρ as a function of the transmission probability, ε, for different channel conditional 
distributions for a particular spatial correlation index, m = 0.01. 

 
Fig. 5. Representative spatial conditional probability mass function, P{X i+1 = x i+1|Xi = 4}, for different values of the 
correlation index m, which determines the amount of correlation present among source-image pixels. 

We find that the case of Poisson photon statistics yields a higher normalized mutual information than 
that for the Boltzmann (geometric) photon statistics. We also observe that, as expected, the 
normalized mutual information from the binomial photon-statistics case converges to that for the 
Poisson statistics as the parameter p of the binomial distribution tends to zero (while keeping its mean 
fixed). 

Figure 7 shows ρ as a function of the transmission probability, ε, parameterized by different spatial 
correlation indices, m, for both the Poisson and geometric photon statistics. Here too we find that the 
Poisson-statistic model offers higher fidelity metric, ρ, than that offered by the geometric photon-
statistics model. Notably, it is seen that fidelity metric increases with spatial correlation in the source 
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image. In particular, Fig. 7 suggests that the highly correlated case, corresponding to m = 0.5, yields 
higher fidelity metric than that offered by the nearly independent-pixel case (m = 0.0005). 

In summary, we draw the following observations from the results. First, the performance metric ρ 
increases as the variance of the photon number decreases (from that corresponding to a Boltzmann 
distribution, to a Poisson distribution, and finally to a binomial distribution). This is expected since a 
reduced quantum noise implies that the photon count resembles the image more closely and, in turn, 
implying higher correlation between the source image and the photon-counted output image. Second, 
a more important observation is that ρ increases as the spatial correlation in the image becomes 
stronger. This suggests that the ability of the PCI approach to retain spatial information improves with 
the spatial correlation in the source image. Namely, the PCI approach seems to be inherently geared 
toward “images” rather than individual pixels. These observations are confirmed in the 2D simulations 
considered next. 

 
Fig. 6. Normalized mutual information for different possible channel distributions while using a Markov-chain model for P 
X(x), with a specific correlation index, m = 0.01. Here we used Np = 3. 
 

3.3. Two-dimensional case: Markov random field model 
3.3.1. Brief background on Markov random fields 

In a Markov-random field (MRF), the value of each pixel depends on a neighborhood of pixels. Various 
neighborhood systems can be defined for the lattice corresponding to the sites of pixels in an image. 
Some typical examples of neighborhoods are shown in Fig. 8(a). From the Hammersley-Clifford 
theorem [33], we have the so-called Gibbs representation for the probability distribution of a MRF. A 
Gibbs random field (GRF) is defined by Gibbs distribution: 

(16) 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-18-3-2449&id=195141#fig07
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-18-3-2449&id=195141#fig08
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-18-3-2449&id=195141#ref33


𝑃𝑃{𝑋𝑋 = 𝑥𝑥} =
1
𝑍𝑍 exp�−

𝑈𝑈(𝑥𝑥)
𝑇𝑇 �, 

where x is an image and U is the energy function given by 

(17) 

𝑈𝑈(𝑥𝑥) = �𝑉𝑉𝑐𝑐(𝑥𝑥)
𝑐𝑐∊𝐶𝐶

, 

where the above summation is over the set C of all cliques c and Vc is a clique potential (or interaction 
function). A clique, c, is a subset of sites in an image with the property that every pair of distinct sites 
are neighbors. (By definition, every set containing only one site is also a clique.) If the clique potential, 
Vc(x), is independent of the position of the clique in the lattice, then we call such an MRF a 
homogeneous MRF. Figure 8(b) shows all the cliques that are present in a second-order neighborhood. 
In a first-order neighborhood, we have two categories of cliques based on the number of points they 
contain, as shown by the first three shapes of cliques (from top, left corner) in Fig. 8(b). In the second-
order neighborhood, we have four categories and a total of ten shapes of cliques. 

In this paper, we have considered a commonly used special case of a homogeneous MRF termed the 
Ising model, [33]. A generalized Ising model is characterized by its clique potential function, which has 
the following form: 

(18) 

𝑉𝑉𝑐𝑐(𝑋𝑋) = �𝛽𝛽𝑐𝑐 if the pixel values of 𝑋𝑋 at the site𝑠𝑠 in 𝑐𝑐 are same
−𝛽𝛽𝑐𝑐 otherwise.  
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Fig. 7. Family of curves showing that presence of spatial correlation in the source image results in an increase in the 
normalized mutual information for (a) the Poisson photon-counting channel and (b) the geometric photon-counting 
channel. Here we used Np = 3. 

Here, βc is a real number and it depends on the type of the clique; this parameter controls the spatial 
correlation in the image. A more detailed description of MRFs is given in Appendix 5.1. 

Finally, it is known that for an image modeled by a homogeneous MRF, it is sufficient to consider H(X) 
and I(Y;X) for a neighborhood of a pixel [31]. A detailed description of the method of estimating these 
quantities from an image is given in Appendix 5.2. 

3.3.2. Discussion of the normalized mutual information metric in the 2D setting 

We have generated MRF images according to the generalized Ising model described in (18) with the 
following specification of the parameter βc. For any one-site clique c, βc = 1; for any two-site clique c, βc 
= β, a constant. Finally, for all three-site and four-site cliques, βc = 0. We followed the Metropolis 
sampling algorithm [33] to generate 3-bit images of size 128×128 with varying spatial-correlation 
parameter, β. (The temperature parameter, T, as discussed in Appendix 5.1, is set to 3.) The algorithm 
is run for 1000 iterations for each image generated; examples are shown in Fig. 9 showing the change 
in spatial correlation in the image as β is varied. 
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To quantify the spatial correlation present in the source images, we estimated the auto-covariance of 
the image. More precisely, for each selection of the parameter β we generated 50 realizations of the 
image. We then formed the covariance matrix corresponding to the 50 sample images and generated 
the L 1 norm of it, which is a measure of spatial correlation. Next, we normalized the spatial correlation 
in the image by that for a constant (perfectly correlated image), which resulted in a number between 0 
and 1. We took this number, termed the correlation metric as a measure of the amount of spatial 
correlation present in a the MRF image. 

 
Fig. 8. 8(a) First-order and second-order neighborhoods (of the center pixel) considered in this paper. 8(b) Cliques of various 
sizes up to four-point sites. The first three cliques shown (from top-left to top-right) correspond to a first-order 
neighborhood; all ten cliques correspond to the second-order neighborhood system. 

 
Fig. 9. Sample MRF images generated according to a generalized Ising model with potential energies given by (18) using 
various values for the parameter β. We employed a Metropolis sampler using 1000 iterations. The values used for the 
parameter β are (a)β = -2, (b)β = -1, (c)β = -0.975, (d)β = -0.95, and (e)β = -0.9, (f)β = -0.4. 

From Table 2, we can see that as the parameter β decreases, the correlation metric increases. In 
particular, from Fig. 10, we observe that, when β increases from -1 to -0.9, the correlation metric drops 
rapidly. This result can also be seen in from Figure 9: as β increases, the image begins to loose its 
spatial structure and begins to resemble white noise. It is also evident that as the the correlation 
metric increases (by decreasing the parameter β), the fidelity metric, ρ, also increases. 

Next, as in the case of the 1D Markov-chain model, we plot ρ as a function of transmission probability, 
ε, parameterized by β, as shown in Fig. 11(a). It is seen that ρ increases monotonically with ε. 
Moreover, for a fixed ε, ρ increases as β is decreased (i.e., as correlation metric is increased). To see 
the dependence of ρ on spatial correlation of the image more clearly, we plotted ρ as a function of the 
correlation metric, as shown in Fig 11(b). It is seen that there is a nearly linear relationship between 
the correlation metric and ρ. 

Table 2. Dependence of the spatial-correlation and fidelity metrics on the parameter β for the case N p ε = 3. 
β  Correlation Metric ρ  
-2 0.32 0.36 
-1.25 0.29 0.35 
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-1 0.26 0.31 
-0.975 0.24 0.29 
-0.95 0.16 0.23 
-0.925 0.119 0.17 
-0.9 0.1169 0.15 
-0.85 0.1161 0.14 
-0.8 0.1158 0.13 
-0.7 0.1155 0.126 
-0.6 0.11544 0.120 
-0.5 0.11535 0.116 
-0.4 0.11531 0.114 
+10 0.1152 0.112 

4. Conclusions 

In this paper we have viewed the PCI method as a communication system over a stochastic channel; 
this allowed us to model and analyze the performance of the PCI method within a rigorous 
information-theoretic framework. In our model, we regard the source as the ensemble of all possible 
intensity images of interest with a known probability distribution function and the output as the 
ensemble of all digital photon-count images. The channel is governed by laws of statistical optics and 
photo-detection, which together allow us to characterize the conditional probability that an output 
image is generated given that a specific source image has been used. Normalized mutual information 
between the source and the output images was proposed as a fidelity metric, measuring the loss of 
information content in the output image relative to the source image. The analysis specifically captures 
the role of spatial correlation present in the source image by means of Markov image models. 
Calculations suggest that the effectiveness of the PCI method is enhanced with the presence of spatial 
correlation in the source image. In addition, we examined the performance of the PCI method under 
Poisson and alternative photon statistics (Boltzmann and photon-number squeezed distributions). 
Calculations suggest that the performance improves as the variance of the photon number is reduced, 
which is consistent with our understanding of the role of quantum noise in imaging. 

 
Fig. 10. Figure showing the relation between correlation metric, and the spatial correlation parameter β. 



 
Fig. 11. Figure showing the relation between correlation metric, ρ and the mean number of photon counts at the out put 
per pixel per unit integration time. 

While this paper considers only the analysis of elemental images in the PCI method, our model can be 
extended in a straightforward manner to sequences of elemental images and 3D images by expanding 
the sizes of the vectors. However, we believe that the insight brought about by our analysis of 
elemental images can justify the tenet of the photon-counting integral imaging approach as a 
compressive sensing tool. There are many possible directions that can be pursued based upon the 
foundational work provided in this paper. For example, since image compression is an inherent 
property of the PCI method, it will be interesting to look into the fundamental trade-off between 
compression and preserving 3D image fidelity in the PCI method as well as compressive 3D imaging and 
visualization. It is also possible to employ recognition-specific metrics such as the Mahalanobis and 
Bhattacharya distances to further characterize the use of PCI-generated imagery in object 
classification. 

5. Appendix 
5.1. Background to MRF 

A random field is a collection of random variables arranged on a lattice, 

(19) 



𝑋𝑋 = �𝑋𝑋𝑖𝑖,𝑗𝑗 , (𝑖𝑖, 𝑗𝑗) ∊ 𝑆𝑆�, 

where S is a rectangular array of sites (lattice): 

(20) 

𝑆𝑆 = {(𝑖𝑖, 𝑗𝑗)|1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁}. 

A local neighborhood N i,j of the site (i,j) can be defined as 

(21) 

𝑁𝑁𝑖𝑖,𝑗𝑗 = {(𝑘𝑘, 𝑙𝑙) ∊ 𝑆𝑆:𝐷𝐷[(𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙)] ≤ 𝐾𝐾, (𝑘𝑘, 𝑙𝑙) ≠ (𝑖𝑖, 𝑗𝑗)}, 

where K is an integer representing the order of the neighborhood and D is some measurement of 
distance. A neighborhood system N for S is defined as 

(22) 

𝑁𝑁 = �𝑁𝑁𝑖𝑖,𝑗𝑗 , (𝑖𝑖, 𝑗𝑗) ∊ 𝑆𝑆�. 

Some typical neighborhood systems are shown in Fig 8(a). 

With a neighborhood system N defined on the lattice S, we can restate the Markov property for a MRF, 
X. By defining 

(23) 

𝑋𝑋𝑖𝑖,𝑗𝑗𝑐𝑐 ≜ {𝑋𝑋𝑘𝑘,𝑙𝑙 , (𝑘𝑘, 𝑙𝑙) ∊ 𝑆𝑆(𝑖𝑖, 𝑗𝑗)}, 

the Markov property can be stated as 

(24) 

𝑃𝑃�𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 ∣∣ 𝑋𝑋𝑖𝑖,𝑗𝑗𝑐𝑐 � = 𝑃𝑃�𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 ∣∣ 𝑋𝑋𝑘𝑘,𝑙𝑙 = 𝑥𝑥𝑘𝑘,𝑙𝑙 , (𝑘𝑘, 𝑙𝑙) ∊ 𝑁𝑁𝑖𝑖,𝑗𝑗 �. 

From the Hammersley-Clifford theorem [33], we have an equivalence between a MRF and a Gibbs 
random field (GRF). The benefit of this theorem is that it allows the probability distribution to be stated 
explicitly. 

A GRF is defined by Gibbs distribution: 

(25) 
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𝑃𝑃𝑥𝑥(𝑥𝑥) =
1
𝑍𝑍 exp�−

𝑈𝑈(𝑥𝑥)
𝑇𝑇 �, 

where Z is a normalizing constant known as the partition function and it can be written as 

(26) 

𝑍𝑍 = � exp
𝑥𝑥∊𝛺𝛺

�−
𝑈𝑈(𝑥𝑥)
𝑇𝑇 �, 

T is a constant called temperature, x is an image and U is the energy function. The energy 

(27) 

𝑈𝑈(𝑥𝑥) = �𝑉𝑉𝑐𝑐(𝑥𝑥)
𝑐𝑐∊𝐶𝐶

 

is a sum of clique potentials, Vc over all possible cliques C associated with a neighborhood system. A 
clique, c, is a subset of sites in which every pair of distinct sites are neighbors. Some typical cliques are 
shown in Fig 8(b). 

5.2. Computing of the fidelity metric 

From the MRF-GRF equivalence we can write the conditional probability distribution of a pixel given its 
neighborhood as 

(28) 

𝑃𝑃�𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 ∣∣ 𝑋𝑋𝑘𝑘,𝑙𝑙 = 𝑥𝑥𝑘𝑘,𝑙𝑙 , (𝑘𝑘, 𝑙𝑙) ∊ 𝑁𝑁𝑖𝑖,𝑗𝑗 � =
1
𝑍𝑍𝑖𝑖,𝑗𝑗

exp�−
𝑈𝑈�𝑥𝑥𝑖𝑖,𝑗𝑗�
𝑇𝑇 �, 

with energy over a neighborhood given by 

(29) 

𝑈𝑈�𝑥𝑥𝑖𝑖,𝑗𝑗� = � 𝑉𝑉𝑐𝑐(𝑋𝑋𝑐𝑐),
𝑐𝑐:(𝑖𝑖,𝑗𝑗)∊𝐶𝐶

 

where X c represents the pixels in clique c. For a homogeneous MRF, the conditional probability 
distribution of a pixel given its neighborhood does not depend on the location of the pixel. For such a 
homogeneous MRF model, it has been observed that the entropy of the pixel given its neighborhood is 
a good measure of the entropy of the entire image [31]. 
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Next, for a particular MRF model, there can be many neighborhood configurations which will yield the 
same energy. Following [31], let us denote the set of all configurations of the neighborhood which 
result in same energy (and there by same conditional probability) as αx, and the state of the 
neighborhood by the random variable AX. Now we can write the conditional entropy of a pixel given its 
neighborhood as [31] 

(30) 

𝐻𝐻�𝑋𝑋𝑖𝑖,𝑗𝑗 ∣∣ 𝑋𝑋𝑘𝑘,𝑙𝑙, (𝑘𝑘, 𝑙𝑙) ∊ 𝑁𝑁𝑖𝑖,𝑗𝑗 � = −��𝑃𝑃
𝛼𝛼𝑥𝑥

�𝐴𝐴𝑋𝑋 = 𝛼𝛼𝑥𝑥,𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗�

𝑥𝑥𝑖𝑖,𝑗𝑗

log2�𝑃𝑃�𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 ∣∣ 𝐴𝐴𝑋𝑋 = 𝛼𝛼𝑥𝑥 ��, 

where P{AX = αx,X i,j = x i,j} is the joint probability of a site taking value x i,j and its neighbors being in 
state αx and P{X i,j = x i,j|AX = αx} is the conditional probability of a site taking value x i,j knowing its 
neighbors are in state αx. By approximating the probabilities with their corresponding histograms, 
fAX(αx) and f AXXi,j(αx,x i,j), we can recast the conditional entropy as [31] 

(31) 

𝐻𝐻�𝑋𝑋𝑖𝑖,𝑗𝑗 ∣∣ 𝑋𝑋𝑘𝑘,𝑙𝑙, (𝑘𝑘, 𝑙𝑙) ∊ 𝑁𝑁𝑖𝑖,𝑗𝑗 � = −��𝑓𝑓𝐴𝐴𝑋𝑋𝑋𝑋𝑖𝑖,𝑗𝑗
𝛼𝛼𝑥𝑥

𝑥𝑥𝑖𝑖,𝑗𝑗

�𝛼𝛼𝑥𝑥, 𝑥𝑥𝑖𝑖,𝑗𝑗�log2 �
𝑓𝑓𝐴𝐴𝑋𝑋𝑋𝑋𝑖𝑖,𝑗𝑗�𝛼𝛼𝑥𝑥, 𝑥𝑥𝑖𝑖,𝑗𝑗�

𝑓𝑓𝐴𝐴𝑋𝑋(𝛼𝛼𝑥𝑥) �. 

Similarly, we can define the mutual information as [31] 

(32) 

𝐼𝐼� 𝑋𝑋𝑖𝑖,𝑗𝑗;𝑌𝑌𝑖𝑖,𝑗𝑗 ∣∣ 𝑋𝑋𝑘𝑘,𝑙𝑙 ,𝑌𝑌𝑘𝑘,𝑙𝑙 , (𝑘𝑘, 𝑙𝑙) ∊ 𝑁𝑁𝑖𝑖,𝑗𝑗 � = 

����𝑓𝑓𝐴𝐴𝑋𝑋𝑋𝑋𝑖𝑖,𝑗𝑗𝐴𝐴𝑌𝑌𝑌𝑌𝑖𝑖,𝑗𝑗
𝛼𝛼𝑦𝑦

𝛼𝛼𝑥𝑥

�𝛼𝛼𝑥𝑥, 𝑥𝑥𝑖𝑖,𝑗𝑗 ,𝛼𝛼𝑦𝑦,𝑦𝑦𝑖𝑖,𝑗𝑗�log2

𝑦𝑦𝑖𝑖,𝑗𝑗

�
𝑓𝑓𝐴𝐴𝑋𝑋𝑋𝑋𝑖𝑖,𝑗𝑗𝐴𝐴𝑌𝑌𝑌𝑌𝑖𝑖,𝑗𝑗�𝛼𝛼𝑥𝑥, 𝑥𝑥𝑖𝑖,𝑗𝑗,𝛼𝛼𝑦𝑦,𝑦𝑦𝑖𝑖,𝑗𝑗�𝑓𝑓𝐴𝐴𝑋𝑋(𝛼𝛼𝑥𝑥)𝑓𝑓𝐴𝐴𝑌𝑌�𝛼𝛼𝑦𝑦�

𝑓𝑓𝐴𝐴𝑋𝑋𝐴𝐴𝑌𝑌�𝛼𝛼𝑥𝑥,𝛼𝛼𝑦𝑦�𝑓𝑓𝐴𝐴𝑋𝑋𝑋𝑋𝑖𝑖,𝑗𝑗�𝛼𝛼𝑥𝑥, 𝑥𝑥𝑖𝑖,𝑗𝑗�𝑓𝑓𝐴𝐴𝑌𝑌𝑌𝑌𝑖𝑖,𝑗𝑗�𝛼𝛼𝑦𝑦,𝑦𝑦𝑖𝑖,𝑗𝑗�
�

𝑥𝑥𝑖𝑖,𝑗𝑗

 

with similar interpretations of the histograms. 

From Equations (31) and (32) we can calculate the metric ρ. For example, with the generalized Ising 
model, as given in (18), and a second order neighborhood with clique potentials assigned to the cliques 
as in Section 3.3.2, the number of states required in the estimation of entropy and mutual information 
is only nine. The possible energy levels for any of the eight cliques are β and -β. Therefore, the set of all 
states a second order neighborhood can take is {-8β,-6β,-4β,-2β,0,2β,4β,6β,8β}. Therefore we may 
consider only 9 states instead of 88 configurations, which simplifies the required calculations 
significantly. 

https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-18-3-2449&id=195141#ref31
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-18-3-2449&id=195141#ref31
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-18-3-2449&id=195141#ref31
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-18-3-2449&id=195141#ref31
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-18-3-2449&id=195141#e34
https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-18-3-2449&id=195141#e35


Acknowledgement 

The authors would like to thank John A. Gubner for valuable discussions. 

References and links 
1. B. Javidi, F. Okano, and J. Y. S. eds, “Three dimensional imaging, visualization, and display,” Springer (2009). 
2. A. R. L. Travis, “The display of three dimensional video images,” Proc. IEEE J. 85, 1817–1832 (1997).  
3. T. Okoshi, “Three-dimensional displays,” Proc. IEEE J. 68, 548–564 (1980).  
4. Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, “Three dimensional imaging and display using 

computational holographic imaging,” Proc. IEEE J. 94, 636–654 (2006).   
5. S. Benton, “Selected papers on 3d displays,” SPIE Press Book (2001). 
6. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys (Paris) 7, 821–825 (1908). 
7. H. E. Ives, “Optical properties of a lippmann lenticulated sheet,” J. Opt. Soc. Am. 21, 171–176 (1931).  
8. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 

58, 71–76 (1968). 
9. A. Stern and B. Javidi, “3d image sensing, visualization, and processing using integral imaging,” Proc. IEEE J. 94, 

591–608 (2006).   
10. L. Yang, M. McCornick, and N. Davies, “Discussion of the optics of a new 3-d imaging system,” Appl. Opt. 27, 

4529–4534 (1988).   
11. R. Martnez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martnez-Corral, “Enhanced viewing-angle 

integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).  
12. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-d multiperspective display 

by integral imaging,” Proc. IEEE J. 97, 1067–1077 (June 2009).  
13. Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer-generated integral photograph,” 

Jpn. J. Appl. Phys. 17, 1683–1684 (1978).  
14. B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging using lens switching,” Opt. Lett. 27, 

818–820 (2002).  
15. L. Erdmann and K. J. Gabriel, “High resolution digital photography by use of a scanning microlens array,” 

Appl. Opt. 40, 5592–5599 (2001).   
16. F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-dimensional video system based on integral 

photography,” Opt. Eng. 38, 1072–1077 (1999).  
17. B. Javidi, S.-H. Hong, and O. Matoba, “Multi dimensional optical sensors and imaging systems,” Appl. Opt. 45, 

2986–2994 (2006).  
18. H. Arimoto and B. Javidi, “Integrate three-dimensional imaging with computed reconstruction,” Opt. Lett. 26, 

157–159 (2001).  
19. M. Levoy and P. Hanrahan, “Light field rendering,” Proc. ACM Siggarph, ACM Press NEEDS TO BE CHANGED 

15, 31–42 (1996). 
20. J. S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29, 1230–1232 

(2004).  
21. G. M. Morris, “Scene matching using photon-limited images,” J. Opt. Soc. Am. A. 1, 482–488 (1984).  
22. J. W. Goodman, Statistical optics (John Wiley & sons, 1985). 
23. E. A. Watson and G. M. Morris, “Comparison of infrared up conversion methods for photon-limited imaging,” 

J. Appl. Phys. 67, 6075–6084 (1990). 
24. K. Lange and R. Carson, “Em reconstruction algorithms for emission and transmission tomography,” J. 

Comput. Assist. Tomogr. 8, 306–316 (1984).  
25. M. Guillaume, P. Melon, and P. Refregier, “Maximum-likelihood estimation of an astronomical image from a 

sequence at low photon levels,” J. Opt. Soc. Am. A. 15, 2841–2848 (1998). 
26. S. Yeom, B. Javidi, and E. Watson, “Three-dimensional distortion-tolerant object recognition using photon-

counting integral imaging,” Opt. Express 15, 1513–1533 (2007).  



27. B. Tavakoli, B. Javidi, and E. Watson, “Three-dimensional visualization by photon counting computational 
integral imaging,” Opt. Express 16, 4426–4436 (2008.   

28. I. Moon and B. Javidi, “Three-dimensional recognition of photon starved events using computational integral 
imaging and statistical sampling,” Opt. Lett. 34, 731–733 (2009).  

29. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (New York: Wiley, 2007). 
30. T. M. Cover and J. A. Thomas, Elements of Information Theory (John Wiley & sons, 1991).  
31. E. Volden, G. Giraudon, and M. Berthod, “Information in Markov random fields and image redundancy,” in 

“Selected Papers from the 4th Canadian Workshop on Information Theory and Applications II,” 
(Springer-Verlag, London, UK, 1996), pp. 250–268. 

32. L. Mandel, “Sub-poissonian photon statistics in resonance fluorescence,” Opt. Lett. 4, 205–207 (1979).  
33. S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the bayesian restoration of images,” 

IEEE Trans. Pattern Analysis and Machine Intelligence 6, 721–741 (1984).  
 


	Information theoretic approach for assessing image fidelity in photon-counting arrays
	Recommended Citation

	Abstract
	1. Introduction
	2. Problem formulation
	2.1. Probabilistic model for PCI under Poisson photon statistics
	2.2. Probabilistic model for PCI under alternative photon statistics
	2.3. Normalized mutual-information metric
	2.4. A classification example

	3. Results
	3.1. One-dimensional case: Markov-chain model
	3.2. Discussion of the normalized mutual information metric
	3.3. Two-dimensional case: Markov random field model
	3.3.1. Brief background on Markov random fields
	3.3.2. Discussion of the normalized mutual information metric in the 2D setting


	4. Conclusions
	5. Appendix
	5.1. Background to MRF
	5.2. Computing of the fidelity metric

	Acknowledgement
	References and links

