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Abstract 
A computationally efficient method for image registration is investigated that can achieve an improved 
performance over the traditional two-dimensional (2-D) cross-correlation-based techniques in the 
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presence of both fixed-pattern and temporal noise. The method relies on transforming each image in 
the sequence of frames into two vector projections formed by accumulating pixel values along the 
rows and columns of the image. The vector projections corresponding to successive frames are in turn 
used to estimate the individual horizontal and vertical components of the shift by means of a one-
dimensional (1-D) cross-correlation-based estimator. While gradient-based shift estimation techniques 
are computationally efficient, they often exhibit degraded performance under noisy conditions in 
comparison to cross-correlators due to the fact that the gradient operation amplifies noise. The 
projection-based estimator, on the other hand, significantly reduces the computational complexity 
associated with the 2-D operations involved in traditional correlation-based shift estimators while 
improving the performance in the presence of temporal and spatial noise. To show the noise rejection 
capability of the projection-based shift estimator relative to the 2-D cross correlator, a figure-of-merit 
is developed and computed reflecting the signal-to-noise ratio (SNR) associated with each estimator. 
The two methods are also compared by means of computer simulation and tests using real image 
sequences. 

SECTION I. 
Introduction 
Image registration is commonly used to provide electronic stabilization of sensors or to facilitate the 
processing of multiple motion-compensated frames in order to improve image quality (e.g., by means 
of temporal averaging). Some new applications of registration also include resolution enhancement 
from multiple frames of data [1]–[2][3][4][5] and nonuniformity correction in focal-plane arrays [1], 
[6]–[7][8]. In many situations, the performance of algorithms that employ image registration 
information relies heavily on the accuracy of the shift estimates. The accuracy of the shift estimates 
generated using various registration algorithms is, in turn, strongly affected by the temporal and 
spatial noise inherent in all sensors [9]. Temporal noise, which fluctuates randomly from frame to 
frame, includes photo-detection noise, background or stray light, dark current, read-out noise, etc. In 
contrast to temporal noise, spatial noise has the characteristic that its realizations do not vary from 
frame to frame resulting in an ambient spatial pattern which superimposes itself on the true scene 
[10]. This spatial noise is often referred to as fixed-pattern noise and is due to the fact that every 
detector in the array responds differently to light. Fixed-pattern noise is especially undesirable in 
image registration since any pattern that remains stationary in time will tend to bias any shift-
estimation algorithm toward solutions that favor no shifts between the frames of image data. Fixed-
pattern noise can be reduced by calibrating the sensor by means of imaging target scenes with uniform 
intensities. Fixed-pattern noise can also be reduced from sequences of video by post-processing 
algorithms [6], [7], [11]. However, some of these methods inherently rely on accurate image 
registration of the raw video [8]. It is therefore very desirable to have a registration algorithm that is 
tolerant to fixed-pattern noise. 

A commonly used registration technique is based on maximizing the two-dimensional (2-D) cross-
correlation function between successive frames, in which case, the shift estimate is defined as the 
maximizing point [12]. The 2-D cross-correlator is generally regarded as a robust estimator in the 
presence of noise in comparison to more computationally-efficient estimators. Unfortunately, its 
implementation involves three discrete-Fourier transforms (DFTs) at the size of the image. Gradient-



based shift estimation techniques [2], [13], on the other hand, have a reduced computational 
complexity but are sensitive to fixed-pattern noise since they may measure false spatial gradients that 
will be consistently present in successive frames. 

In this paper, the concept of integral projection is employed to develop a projection-based registration 
technique that is computationally efficient and can achieve improved performance over the traditional 
2-D cross-correlation-based techniques in the presence of both fixed-pattern and temporal noise. This 
concept was first conceived from Huang's observation that the linear phase associated with simple 
translations is encoded on the Fourier axes [14]. Since then the integral projection shift-estimation 
technique had been introduced to help accomplish inter-frame image encoding by registering 
subblocks within an image with subblocks within successive frames in a video sequence [15]–[16][17]. 
Under the method considered in this paper, each image in a sequence is transformed into two vector 
projections, formed by accumulating pixel values along the rows and columns of the image, which are 
subsequently used to estimate the horizontal and vertical components of the shift by means of a one-
dimensional (1-D) cross-correlation-based estimator. All of the 2-D DFTs associated with the traditional 
cross-correlator are therefore replaced by 1-D operations. Most importantly, by virtue of the 
row/column averaging mechanism involved in the projections and the mutual statistical independence 
of the response characteristics of the detectors, the effect of fixed-pattern noise can be significantly 
reduced in many practical situations. Although this 1-D technique for image registration has been used 
in other similar applications [15]–[16][17], the notion that the projection operation improves 
performance over the 2-D correlator in the presence of either temporal or fixed-pattern noise has 
been either completely unknown or not well understood. It is the goal of this paper to reveal the 
mechanism by which this improved performance is realized and provide a mathematical framework by 
which the performance improvement can be understood and quantified. 

This paper is organized as follows. In Section II, a description of the projection-based estimator is given 
and an explanation is presented as to why the projections preserve the shift information. In Section III, 
a signal-to-noise ratio (SNR) analysis is performed that compares the performance of the 2-D cross-
correlation shift estimator to that of the projection-based shift estimator in the presence of both 
temporal and fixed-pattern noise. A performance figure-of-merit is defined for both shift estimators 
and evaluated using two image models that reflect scenarios when the image possesses high and low 
degrees of statistical spatial correlation. In Section IV, computer simulations are generated 
demonstrating the performance of the projection technique on simulated image sequences. In 
Section V, real image sequences are used to demonstrate the performance of the projection 
technique. The main conclusions are summarized in Section VI. 

SECTION II. 
The Projection-Based Shift Estimator 
Consider observing two successive measurements (frames) of a scene i at two distinct times. The time 
between the two frames is assumed to be sufficiently short so that the scene remains unchanged and 
the sensor motion results in only a small relative translation of the scene. Let d1 denote the first 
measurement represented by the N×N matrix whose elements are  

(1) 



𝑑𝑑1(𝑥𝑥, 𝑦𝑦) = 𝑖𝑖(𝑥𝑥,𝑦𝑦) + 𝑞𝑞1(𝑥𝑥,𝑦𝑦) 

where q1 is a general zero-mean random noise process (temporal and/or spatial) associated with the 
first frame. Suppose that in the second frame, the scene i is translated by an amount (α,β) in the 
horizontal and vertical directions so that the second frame is given by  

𝑑𝑑2(𝑥𝑥,𝑦𝑦) = 𝑖𝑖(𝑥𝑥 − 𝛼𝛼, 𝑦𝑦 − 𝛽𝛽) + 𝑞𝑞2(𝑥𝑥,𝑦𝑦) 

where q2 is the zero-mean random noise associated with the second frame, and the shifts α and β are 
assumed to be integers. Before we introduce the projection-based estimator, we review a commonly-
used (based on the 2-D cross-correlation) approach for estimating α and β given the two frames d1 and 
d2. The technique relies on maximizing the sample 2-D cross-correlation defined by  

𝐶𝐶(𝑧𝑧,𝑤𝑤) =Δ ��𝑑𝑑1(𝑥𝑥,𝑦𝑦)𝑑𝑑2(𝑧𝑧 + 𝑥𝑥,𝑤𝑤 + 𝑦𝑦)
𝑁𝑁

𝑦𝑦=1

𝑁𝑁

𝑥𝑥=1

 

where the shifts are assumed for convenience to be circular. (Border effects resulting from the circular 
shift become negligible as N increases.) In particular, the traditional 2-D cross-correlation shift 

estimator selects the shift estimates, (𝛼𝛼
^
1,𝛽𝛽

^
1), by the rule  

(2) 

(𝛼𝛼
^
1,𝛽𝛽

^
1) =Δ arg 𝑚𝑚𝑚𝑚𝑥𝑥

𝑧𝑧 ,𝑤𝑤
𝐶𝐶(𝑧𝑧,𝑤𝑤). 

In contrast to (2), the projection-based estimation procedure is divided into two distinct operations:  

1. the projection operation, which is performed by summing up pixels in the rows or columns of 
the image; 

2. performing the 1-D cross-correlation maximization on the projections. 

More precisely, let the projections of the image, 𝑑𝑑𝑖𝑖 , 𝑖𝑖 = 1,2, in the horizontal and vertical directions be 
defined, respectively, by  

𝑑𝑑𝑖𝑖𝑥𝑥(𝑦𝑦) =Δ �𝑑𝑑𝑖𝑖(𝑥𝑥,𝑦𝑦)
𝑁𝑁

𝑥𝑥=1
and

𝑑𝑑𝑖𝑖
𝑦𝑦(𝑥𝑥) =Δ �𝑑𝑑𝑖𝑖(𝑥𝑥, 𝑦𝑦).

𝑁𝑁

𝑦𝑦=1

 

 

The vertical and horizontal vector cross-correlation functions are then given by  
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𝑃𝑃𝑦𝑦(𝑧𝑧) = �𝑑𝑑1
𝑦𝑦(𝑥𝑥)𝑑𝑑2

𝑦𝑦(𝑧𝑧 + 𝑥𝑥)
𝑁𝑁

𝑥𝑥=1
and

𝑃𝑃𝑥𝑥(𝑤𝑤) = �𝑑𝑑1𝑥𝑥(𝑦𝑦)𝑑𝑑2𝑥𝑥(𝑤𝑤 + 𝑦𝑦)
𝑁𝑁

𝑦𝑦=1

.

 

Using these statistics, the horizontal and vertical shifts, respectively, are estimated individually using  

(3) top 

(4) bottom 

𝛼𝛼2
^

=Δ arg 𝑚𝑚𝑚𝑚𝑥𝑥
𝑧𝑧
𝑃𝑃𝑦𝑦(𝑧𝑧)

and

𝛽𝛽2
^

=Δ arg 𝑚𝑚𝑚𝑚𝑥𝑥
𝑤𝑤

𝑃𝑃𝑥𝑥(𝑤𝑤).

 

We now show that in the absence of noise [i.e., 𝑑𝑑1(𝑥𝑥,𝑦𝑦) = 𝑖𝑖(𝑥𝑥, 𝑦𝑦) and 𝑑𝑑2(𝑥𝑥, 𝑦𝑦) = 𝑖𝑖(𝑥𝑥 − 𝛼𝛼,𝑦𝑦 − 𝛽𝛽)the 
projection-based estimator is equivalent to the 2-D cross-correlator. First, note that a straightforward 
calculation shows that the vertical projections 𝑑𝑑1

𝑦𝑦(𝑥𝑥) and 𝑑𝑑2
𝑦𝑦(𝑥𝑥) can be written as  

𝑑𝑑1
𝑦𝑦(𝑥𝑥) =

1
𝑁𝑁� 𝐼𝐼(𝑢𝑢, 0)𝑒𝑒𝑗𝑗2𝜋𝜋(𝑢𝑢𝑥𝑥)/𝑁𝑁

𝑁𝑁−1

𝑢𝑢=0
and

𝑑𝑑2
𝑦𝑦(𝑥𝑥) =

1
𝑁𝑁� 𝐼𝐼(𝑢𝑢, 0)𝑒𝑒𝑗𝑗2𝜋𝜋𝑢𝑢(𝑥𝑥−𝛼𝛼)/𝑁𝑁

𝑁𝑁−1

𝑢𝑢=0

 

 respectively, where 𝐼𝐼(𝑢𝑢,𝑣𝑣) is the DFT of the image 𝑖𝑖(𝑥𝑥, 𝑦𝑦). We now substitute the above projections 
into the expression for the projection-based shift estimator given in (3) and apply the convolution 
property of the DFT to obtain  

𝑃𝑃𝑦𝑦(𝑧𝑧) =
1
𝑁𝑁
�𝐼𝐼(𝑢𝑢, 0)𝐼𝐼∗(𝑢𝑢, 0)𝑒𝑒−

𝑗𝑗2𝜋𝜋(𝑧𝑧−𝛼𝛼)𝑢𝑢
𝑁𝑁

𝑁𝑁−1

𝑢𝑢=0

. 

One can immediately recognize 𝐼𝐼(𝑢𝑢, 0)𝐼𝐼∗(𝑢𝑢, 0) as the DFT of the auto-correlation of 𝑑𝑑1
𝑦𝑦, which is 

defined by  

𝑅𝑅11
𝑦𝑦 (𝑧𝑧) =Δ �𝑑𝑑1

𝑦𝑦(𝑧𝑧 + 𝑥𝑥)𝑑𝑑1
𝑦𝑦(𝑥𝑥).

𝑁𝑁

𝑥𝑥=1

 

Finally, after some straightforward algebra it can be shown that 𝑃𝑃𝑦𝑦(𝑧𝑧) = 𝑅𝑅11
𝑦𝑦 (𝑧𝑧 − 𝛼𝛼). Since any auto-

correlation is at a maximum at zero [18], the maximum of Py occurs when z=α, which implies that 𝛼𝛼2
^

=
𝛼𝛼. This shows that the projection-based shift estimator correctly locates the shift in the horizontal 
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direction without noise and with the assumption that all shifts are circular (no new information enters 

the scene). A similar argument can be used to show that 𝛽𝛽
^
2 = 𝛽𝛽. 

 

 

Fig. 1. Mean of the cross-correlation function for (α,β)=(0,0), with the standard deviation of the 
correlation function shown as an error bar. The signal is taken as the difference between the peak 
amplitude and some off-peak value while the noise is taken as the sum of the variances at the peak 
and the off-peak positions. 

In any real imaging system, the scene does not shift circularly, which causes new information to enter 
the field of view. This new information is similar to noise, which makes the Fourier arguments for 
accurate image registration less valid. The projection-based estimator is sensitive to new information 
entering the scene and so the following noncircular correlation estimate is developed with the 
projections as opposed to a circular correlation estimate. In order to help the projection-based shift 
estimation algorithm ignore new information entering the scene, we introduce the window function wf 

that has the following spatial structure: 𝑤𝑤𝑓𝑓(𝑥𝑥) = 1 if �𝑥𝑥 −𝑚𝑚𝑝𝑝� ≤ �𝑁𝑁
2
− 𝛿𝛿𝑠𝑠� and 𝑤𝑤𝑓𝑓(𝑥𝑥) = 0 otherwise. 

In the inequality, mp is the spatial midpoint of the horizontal projection and δs is the maximum shift or 
upper bound of the displacement in pixels between to successive image frames. 

We use the window function in a modified correlation function shown below for |z|≤δs, where δs is 
the maximum displacement expected in the image sequence  

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/21014/974571/974571-fig-1-source-large.gif
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𝑃𝑃𝑦𝑦(𝑧𝑧) = �𝑑𝑑1
𝑦𝑦(𝑥𝑥)𝑤𝑤𝑓𝑓(𝑧𝑧 + 𝑥𝑥)𝑑𝑑2

𝑦𝑦(𝑧𝑧 + 𝑥𝑥)
𝑁𝑁

𝑥𝑥=1

−(�𝑑𝑑1
𝑦𝑦(𝑗𝑗)𝑤𝑤𝑓𝑓(𝑧𝑧 + 𝑗𝑗)/𝑁𝑁)𝑑𝑑2

𝑦𝑦
.

𝑁𝑁

𝑗𝑗=1

 

In this equation, 𝑑𝑑2 
𝑦𝑦

is the average value of this projection. Similarly, the projection in the vertical 
direction is formed in the following manner. The shift estimate is determined from (3) by an exhaustive 
search over all integers |𝑧𝑧| < 𝛿𝛿𝑠𝑠. The window function is applied to the projection in the other 
dimension in the same way. In Section III, the performance of the projection-based shift estimator will 
be compared analytically to that of the 2-D cross-correlation shift estimator in the presence of both 
temporal and fixed-pattern noise. 

SECTION III. 
Performance Analysis 
For purposes of this study, two image models will be investigated. The first model addresses cases 
when the image lacks spatial correlation and the second model addresses cases when the image 
exhibits a high degree of spatial correlation. We begin by developing a figure-of-merit, which quantifies 
the performance of the shift estimators. 

In order to motivate the design of a meaningful figure-of-merit, we first overview the uncertainty in 
the shift estimates. Observe that for the 2-D cross-correlation shift estimator, errors in the shift 
estimation occur when the noise causes false peaks in the cross-correlation of the observed image. 
Fig. 1 shows the amplitude of a typical 1-D cross-correlation function (noise-free) as a function of the 
correlation shift. If a position other than the peak of the noiseless cross-correlation function is to be 
selected as the shift estimate, the net effect of noise at the true and false positions in the sample 
cross-correlation must exceed the difference between the peak of the noise-free cross-correlation at 
the true shift (i.e., at zero) and the values at off-peak positions, as shown in Fig. 1. Thus, for each off-
peak shift value, we define the effective signal as the difference between the expected value of the 
sample cross-correlation function at the off-peak shift and the expected peak value, as shown in Fig. 1. 
Thus, for a given true image i, we define the SNR at any shift (z,w) as the ratio between the effective 
signal squared and the sum of the variance of the noise at (z,w) and the variance of the noise at (α,β). 
We will use the above notion of “signal” and “noise,” averaged over all possible images i, to define the 
figure-of-merit FC for the 2-D cross-correlation shift estimator. More precisely  

(5) 

𝐹𝐹𝐶𝐶(𝑧𝑧,𝑤𝑤,𝛼𝛼,𝛽𝛽) =Δ
(𝐄𝐄[𝐶𝐶(𝛼𝛼,𝛽𝛽)] − 𝐄𝐄[𝐶𝐶(𝑧𝑧,𝑤𝑤)])2

𝐄𝐄�var[𝐶𝐶(𝛼𝛼,𝛽𝛽)|𝑖𝑖] + var[𝐶𝐶(𝑧𝑧,𝑤𝑤)|𝑖𝑖]�
 

 

where the factors appearing in the denominator are conditional variances (e.g., var[𝐶𝐶(𝛼𝛼,𝛽𝛽)|𝑖𝑖] =
𝐄𝐄[𝐶𝐶2(𝛼𝛼,𝛽𝛽)|𝑖𝑖] − 𝐄𝐄[𝐶𝐶(𝛼𝛼,𝛽𝛽)|𝑖𝑖]2and the expectation in the denominator of (5) represents ensemble 
averaging of the image i. The conditional variances involve expectations conditioned on i. If noise were 
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not present in the system, FC would be a function only of the differences |(𝑧𝑧 − 𝛼𝛼)|and |(𝑤𝑤 − 𝛽𝛽)|, but 
because of noise, whose correlation is not always dependent on these differences, the figure-of-merit 
is a function over (z,w,α,β). Similarly, for the projection-based shift estimator, we define the figure-of-
merit in the vertical and horizontal directions, respectively, as  

(6) top 

(7) bottom 

𝐹𝐹𝑃𝑃𝑦𝑦(𝑧𝑧,𝛼𝛼,𝛽𝛽) =Δ
(𝐄𝐄[𝑃𝑃𝑦𝑦(𝛼𝛼)]− 𝐄𝐄[𝑃𝑃𝑦𝑦(𝑧𝑧)])2

𝐄𝐄[var[𝑃𝑃𝑦𝑦(𝑧𝑧)|𝑖𝑖] + var[𝑃𝑃𝑦𝑦(𝛼𝛼)|𝑖𝑖]]
and

𝐹𝐹𝑝𝑝𝑥𝑥(𝑤𝑤,𝛼𝛼,𝛽𝛽) =Δ
([𝐄𝐄[𝑃𝑃𝑥𝑥(𝛽𝛽)]− 𝐸𝐸[𝑃𝑃𝑥𝑥(𝑤𝑤)])2

𝐄𝐄[var[𝑃𝑃𝑥𝑥(𝑤𝑤)|𝑖𝑖] + var[𝑃𝑃𝑥𝑥(𝛽𝛽)|𝑖𝑖]] .

 

In order to calculate the conditional variances in the above expressions, a sensor model must be 
chosen that relates the output data to the input image. Moreover, ensemble averaging over all images 
requires the selection of an appropriate statistical model for the image that suits specific applications. 

A. Sensor Model 
The sensor model examined in this paper describes the measurement as the scene intensity with the 
addition of both temporal and fixed-pattern noise. In particular, the noise terms q1(x,y) and q2(x,y) in 
(1) and (2), associated with the measurements d1 and d2, respectively, take the following form:  

(8) top 

(9) bottom 

𝑞𝑞1(𝑥𝑥,𝑦𝑦) = 𝑏𝑏(𝑥𝑥, 𝑦𝑦) + 𝑛𝑛1(𝑥𝑥, 𝑦𝑦)
and

𝑞𝑞2(𝑥𝑥, 𝑦𝑦) = 𝑏𝑏(𝑥𝑥,𝑦𝑦) + 𝑛𝑛2(𝑥𝑥,𝑦𝑦).
 

The entries of the temporal noise matrices n1 and n2 are both spatially and temporally independent 
each with a variance equal to σ2. On the other hand, the fixed-pattern noise term b(x,y) is assumed to 
be temporally fixed between the two observed frames and its entries are assumed to be independent 
and identically distributed random variables each with a variance of σ2b. The fixed-pattern noise and 
the temporal noise are assumed mutually independent. According to this model, the expressions for 
the figures-of-merit given by (5), (6), and (7) reduce to 𝐹𝐹𝑐𝑐(𝑧𝑧,𝑤𝑤,𝛼𝛼,𝛽𝛽) = 𝐴𝐴𝑐𝑐/𝐵𝐵𝑐𝑐 ,𝐹𝐹𝑃𝑃𝑦𝑦, (𝑧𝑧,𝛼𝛼,𝛽𝛽) = 𝐴𝐴𝑃𝑃𝑦𝑦/𝐵𝐵𝑃𝑃𝑦𝑦, 
and 𝐹𝐹𝑝𝑝𝑥𝑥(𝑤𝑤,𝛼𝛼,𝛽𝛽) = 𝐴𝐴𝑃𝑃𝑥𝑥/𝐵𝐵𝑃𝑃𝑥𝑥, where  

https://ieeexplore.ieee.org/document/#deqn1
https://ieeexplore.ieee.org/document/#deqn2
https://ieeexplore.ieee.org/document/#deqn5
https://ieeexplore.ieee.org/document/#deqn6-7
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𝐴𝐴𝑐𝑐 = (��𝐸𝐸[𝑖𝑖2(𝑥𝑥, 𝑦𝑦) − 𝑖𝑖(𝑥𝑥, 𝑦𝑦)
𝑁𝑁

𝑦𝑦=1

𝑁𝑁

𝑥𝑥=1
× 𝑖𝑖(𝑧𝑧 + 𝑥𝑥 − 𝛼𝛼,𝑤𝑤 + 𝑦𝑦 − 𝛽𝛽)]

−𝑁𝑁2𝜎𝜎𝑏𝑏2(𝛿𝛿(𝑧𝑧,𝑤𝑤) − 𝛿𝛿(𝛼𝛼,𝛽𝛽))2)

𝐵𝐵𝑐𝑐 = 4��𝐸𝐸[𝑖𝑖(𝑥𝑥, 𝑦𝑦)((𝜎𝜎2 + 𝜎𝜎𝑏𝑏2)𝑖𝑖(𝑥𝑥,𝑦𝑦)
𝑁𝑁

𝑦𝑦=1

𝑁𝑁

𝑥𝑥=1

+𝜎𝜎𝑏𝑏2𝑖𝑖(𝑥𝑥 − 𝛼𝛼, 𝑦𝑦 − 𝛽𝛽))] + 2𝑁𝑁2

× (𝜎𝜎4 + 𝜎𝜎𝑏𝑏4(1 + 2𝛿𝛿(𝑧𝑧,𝑤𝑤)))

𝐴𝐴𝑃𝑃𝑦𝑦 = (�� � 𝐸𝐸[𝑖𝑖(𝑥𝑥,𝑦𝑦)(𝑖𝑖(𝑥𝑥, 𝑦𝑦 − 𝛽𝛽)
𝑁𝑁

𝑦𝑦′=1

𝑁𝑁

𝑦𝑦=1

𝑁𝑁

𝑥𝑥=1

−𝑖𝑖(𝑧𝑧 + 𝑥𝑥 − 𝛼𝛼,𝑦𝑦′ − 𝛽𝛽))]

−𝑁𝑁2𝜎𝜎𝑏𝑏2(𝛿𝛿(𝑧𝑧) − 𝛿𝛿(𝛼𝛼))2)

𝐵𝐵𝑃𝑃𝑦𝑦 = 4𝑁𝑁�� � 𝐸𝐸[𝑖𝑖(𝑥𝑥, 𝑦𝑦)((𝜎𝜎2 + 𝜎𝜎𝑏𝑏2)
𝑁𝑁

𝑦𝑦′=1

𝑁𝑁

𝑦𝑦=1

𝑁𝑁

𝑥𝑥=1

× 𝑖𝑖(𝑥𝑥, 𝑦𝑦′ − 𝛽𝛽) + 𝜎𝜎𝑏𝑏2𝑖𝑖(𝑥𝑥 − 𝛼𝛼,𝑦𝑦′ − 𝛽𝛽))]
+2𝑁𝑁3(𝜎𝜎4 + 𝜎𝜎𝑏𝑏4(1 + 2𝛿𝛿(𝑧𝑧)))

𝐴𝐴𝑃𝑃𝑥𝑥 = (�� � 𝐸𝐸[𝑖𝑖(𝑥𝑥, 𝑦𝑦)(𝑖𝑖(𝑥𝑥′ − 𝛼𝛼,𝑦𝑦)
𝑁𝑁

𝑥𝑥′=1

𝑁𝑁

𝑦𝑦=1

𝑁𝑁

𝑥𝑥=1

−𝑖𝑖(𝑥𝑥′ − 𝛼𝛼,𝑤𝑤 + 𝑦𝑦 − 𝛽𝛽))]

−𝑁𝑁2𝜎𝜎𝑏𝑏2(𝛿𝛿(𝑤𝑤) − 𝛿𝛿(𝛽𝛽)))2

and

𝐵𝐵𝑃𝑃𝑥𝑥 = 4𝑁𝑁�� � 𝐸𝐸[𝑖𝑖(𝑥𝑥, 𝑦𝑦)((𝜎𝜎2 + 𝜎𝜎𝑏𝑏2
𝑁𝑁

𝑥𝑥′=1

𝑁𝑁

𝑦𝑦=1

𝑁𝑁

𝑥𝑥=1

)

× 𝑖𝑖(𝑥𝑥′ − 𝛼𝛼,𝑦𝑦) + 𝜎𝜎𝑏𝑏2𝑖𝑖(𝑥𝑥′ − 𝛼𝛼, 𝑦𝑦 − 𝛽𝛽))]
+2𝑁𝑁3(𝜎𝜎4 + 𝜎𝜎𝑏𝑏4(1 + 2𝛿𝛿(𝑤𝑤))).

 



Clearly, the figures-of-merit 𝐹𝐹𝑐𝑐 ,𝐹𝐹𝑃𝑃𝑦𝑦, and 𝐹𝐹𝑝𝑝𝑥𝑥  are functions of the variance of the temporal and fixed-
pattern noise and the true image at the focal plane array i, appearing as the auto-correlation function 
𝐄𝐄[𝑖𝑖(𝑥𝑥, 𝑦𝑦)𝑖𝑖(𝑠𝑠 + 𝑥𝑥, 𝑡𝑡 + 𝑦𝑦)]. In the following subsections, we specialize these figures-of-merit for specific 
image models. 

1) Uncorrelated Image Model 
To capture the cases for which the image exhibits little or no spatial correlation, we will assume a 
correlation function of the form 𝐄𝐄[𝑖𝑖(𝑥𝑥,𝑦𝑦)𝑖𝑖(𝑠𝑠 + 𝑥𝑥, 𝑡𝑡 + 𝑦𝑦)] = 𝑖𝑖𝑜𝑜𝛿𝛿(𝑠𝑠, 𝑡𝑡), An example of images that 
possess this property include astronomical images of unresolvable stars. With the above auto-
correlation model, the expression for Fc becomes  

𝐹𝐹𝑐𝑐 (𝑧𝑧,𝑤𝑤,𝛼𝛼,𝛽𝛽)

=
[𝑁𝑁2𝑖𝑖𝑜𝑜(1− 𝛿𝛿(𝑧𝑧 − 𝛼𝛼,𝑤𝑤 − 𝛽𝛽))− 𝑁𝑁2𝜎𝜎𝑏𝑏2(𝛿𝛿(𝑧𝑧,𝑤𝑤) − 𝛿𝛿(𝛼𝛼,𝛽𝛽))]2

4𝑁𝑁2𝑖𝑖𝑜𝑜(𝜎𝜎2 + 𝜎𝜎𝑏𝑏2(1 + 𝛿𝛿(𝛼𝛼,𝛽𝛽)) + 4𝑁𝑁2(𝜎𝜎4 + (1 + 2𝛿𝛿(𝑧𝑧,𝑤𝑤))𝜎𝜎𝑏𝑏4)
. 

If we choose the combination of integers 𝛼𝛼,𝛽𝛽, 𝑧𝑧, and w that minimizes 𝐹𝐹𝑐𝑐 without choosing (𝑧𝑧,𝑤𝑤) =
(𝛼𝛼,𝛽𝛽) we obtain the lower bound  

𝐹𝐹𝑐𝑐 (𝑧𝑧,𝑤𝑤,𝛼𝛼,𝛽𝛽)

≥
(𝑁𝑁2𝑖𝑖𝑜𝑜 − 𝑁𝑁2𝜎𝜎𝑏𝑏2)2

4𝑁𝑁2𝑖𝑖𝑜𝑜(𝜎𝜎2 + 2𝜎𝜎𝑏𝑏2) + 4𝑁𝑁2(𝜎𝜎4 + 3𝜎𝜎𝑏𝑏4)
 

By choosing (𝑧𝑧,𝑤𝑤) = (0,0) the numerator is minimized. Similarly, this choice makes the denominator 
as large as possible. To further minimize 𝐹𝐹𝑐𝑐, we can choose 𝛿𝛿(𝛼𝛼,𝛽𝛽) to be zero in the numerator and 
one in the denominator. Because our goal is to achieve a lower bound for 𝐹𝐹𝑐𝑐, this choice is valid. For 
the projection-based estimator, the vertical-direction figure-of-merit reduces to  

𝐹𝐹𝑃𝑃𝑦𝑦(𝑧𝑧,𝛼𝛼,𝛽𝛽)

=
(𝑁𝑁2𝑖𝑖𝑜𝑜(1− 𝛿𝛿(𝑧𝑧 − 𝛼𝛼)) −𝑁𝑁2𝜎𝜎𝑏𝑏2(𝛿𝛿(𝑧𝑧) − 𝛿𝛿(𝛼𝛼)))2

4𝑁𝑁3𝑖𝑖𝑜𝑜(𝜎𝜎2 + 𝜎𝜎𝑏𝑏2(1 + 𝛿𝛿(𝛼𝛼,𝛽𝛽)) + 4𝑁𝑁3(𝜎𝜎4 + (1 + 2𝛿𝛿(𝑧𝑧))𝜎𝜎𝑏𝑏4)
 

which can be maximized over 𝛼𝛼,𝛽𝛽, and z to yield the upper bound  

𝐹𝐹𝑃𝑃𝑦𝑦(𝑧𝑧,𝛼𝛼,𝛽𝛽) ≤
(𝑁𝑁2𝑖𝑖𝑜𝑜 + 𝑁𝑁2𝜎𝜎𝑏𝑏2)2

4𝑁𝑁3𝑖𝑖𝑜𝑜(𝜎𝜎2 + 𝜎𝜎𝑏𝑏2) + 4𝑁𝑁3(𝜎𝜎4 + 𝜎𝜎𝑏𝑏4)
. 

Hence, by combining the above bounds and performing the appropriate manipulations and 
simplifications (found in the Appendix), we obtain a lower bound for the ratio 𝐹𝐹𝑐𝑐/𝐹𝐹𝑃𝑃𝑦𝑦under the 
condition that 𝑖𝑖𝑜𝑜 > 2𝜎𝜎𝑏𝑏2 

(10) 

𝐹𝐹𝑐𝑐(𝑧𝑧,𝑤𝑤,𝛼𝛼,𝛽𝛽)
𝐹𝐹𝑃𝑃𝑦𝑦(𝑧𝑧,𝛼𝛼,𝛽𝛽) ≥ 1. 

A similar argument also shows that 𝐹𝐹𝑐𝑐 ≥ 𝐹𝐹𝑝𝑝𝑥𝑥. Hence, we conclude that the 2-D cross-correlation shift 
estimator is superior to the projection-based shift estimator when the image lacks spatial correlation. 



This result is intuitive since whenever spatial averaging is performed on an astronomical image, there is 
very little signal to average for most pixels contain only noise. 

B. Image Models Exhibiting Spatial Correlation 

𝐹𝐹𝑐𝑐(𝑧𝑧,𝛼𝛼,𝛽𝛽) =
[𝑖𝑖𝑜𝑜𝑁𝑁|𝑧𝑧 − 𝛼𝛼| − 2𝑁𝑁2𝜎𝜎𝑏𝑏2(𝛿𝛿(𝑧𝑧,𝛽𝛽) − 𝛿𝛿(𝛼𝛼,𝛽𝛽))]2

16𝑖𝑖𝑜𝑜𝑁𝑁2(𝜎𝜎2 + 2𝜎𝜎𝑏𝑏2) + 8𝑁𝑁2(𝜎𝜎4 + 𝜎𝜎𝑏𝑏4(1 + 2𝛿𝛿(𝑧𝑧,𝛽𝛽)) − 8𝑁𝑁(|𝛼𝛼| + |𝛽𝛽|)𝑖𝑖𝑜𝑜𝜎𝜎𝑏𝑏2

and

𝐹𝐹𝑃𝑃𝑦𝑦(𝑧𝑧,𝛼𝛼,𝛽𝛽) ≥
(𝑖𝑖𝑜𝑜𝑁𝑁2|𝑧𝑧 − 𝛼𝛼| − 2𝑁𝑁2𝜎𝜎𝑏𝑏2(𝛿𝛿(𝑧𝑧) − 𝛿𝛿(𝛼𝛼)))2

8𝑖𝑖𝑜𝑜𝑁𝑁4(𝜎𝜎2 + 2𝜎𝜎𝑏𝑏2) + 8𝑁𝑁3(𝜎𝜎4 + 𝜎𝜎𝑏𝑏4(1 + 2𝛿𝛿(𝑧𝑧)))
.

 

TABLE I SHIFT ESTIMATOR PERFORMANCE FOR THE 2-D CROSS-CORRELATOR (2-D) AND THE 
PROJECTION-BASED (1-D) ESTIMATORS WITH ONLY TEMPORAL NOISE AND No SPATIAL CORRELATION 
IN THE IMAGE. NOTE THAT THE IMAGE POSSESSES No SPATIAL CORRELATION IN THIS EXAMPLE 

 

 

 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/21014/974571/974571-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/21014/974571/974571-table-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/21014/974571/974571-table-1-source-large.gif


Estimator  Peak SNR Error in Pixels 

1-D 10 0 

2-D 10 0 

1-D 9 .1 

2-D 9 0 

1-D 6 6.2 

2-D 6 2.9 

 

 

 

 

Fig. 2. Images showing a star in the presence of temporal noise at two different times. 
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https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/21014/974571/974571-fig-2-source-large.gif


 

 

Fig. 3. Example of star images with fixed-pattern noise added to them. 

In most practical cases, images that are formed in the focal plane of imaging systems possess some 
type of spatial correlation. Examples include imaging extended astronomical objects. For purposes of 
analysis, we will assume a simple correlation model of the form  

𝐸𝐸[𝑖𝑖(𝑥𝑥,𝑦𝑦)𝑖𝑖(𝑠𝑠 + 𝑥𝑥, 𝑡𝑡 + 𝑦𝑦)] = 𝑖𝑖𝑜𝑜 �
𝑁𝑁 − |𝑠𝑠|

2𝑁𝑁 +
𝑁𝑁 − |𝑡𝑡|

2𝑁𝑁 �. 

While this correlation function may not accurately model the auto-correlation of all images, it does 
serve to demonstrate how spatial correlation affects the performance of the projection-based 
estimator relative to the 2-D correlation-based estimator. We first consider the case for which fixed-
pattern noise is absent (i.e., σ2b=0). In this special case, the figures-of-merit Fc and FPy become  

𝐹𝐹𝑐𝑐(𝑧𝑧,𝑤𝑤,𝛼𝛼,𝛽𝛽) =
𝑁𝑁2𝑖𝑖𝑜𝑜2(|𝑧𝑧 − 𝛼𝛼| + |𝑤𝑤 − 𝛽𝛽|)2

16𝑁𝑁2𝑖𝑖𝑜𝑜𝜎𝜎2 + 8𝑁𝑁2𝜎𝜎4
and

𝐹𝐹𝑃𝑃𝑦𝑦(𝑧𝑧,𝛼𝛼,𝛽𝛽) =
𝑁𝑁4𝑖𝑖𝑜𝑜2(|𝑧𝑧 − 𝛼𝛼|)2

16𝑁𝑁4𝑖𝑖𝑜𝑜𝜎𝜎2 − 𝑁𝑁3|𝛽𝛽|𝑖𝑖𝑜𝑜𝜎𝜎2 + 8𝑁𝑁3𝜎𝜎4 .

 

In order to compare the performance of the 2-D cross-correlation shift estimator with that of the 
projection-based estimator in the horizontal direction, we assume that the vertical shift w within Fc is 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/21014/974571/974571-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/21014/974571/974571-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/21014/974571/974571-fig-3-source-large.gif


known, i.e., we set w=β and obtain a version of 𝐹𝐹𝑐𝑐 that is a function over z only. This assumption does 
not affect the computation of 𝐹𝐹𝑃𝑃𝑦𝑦and allows us to compare the figures-of-merit of the two techniques 
for shift in one direction without addressing the negative effects on 𝐹𝐹𝑐𝑐 caused by mis-registration in the 
other dimension. In this case, it can be shown that the ratio of the two figures-of-merit becomes  

𝐹𝐹𝑃𝑃𝑦𝑦(𝑧𝑧,𝛼𝛼,𝛽𝛽)
𝐹𝐹𝑐𝑐(𝑧𝑧,𝛼𝛼,𝛽𝛽) =

𝑁𝑁(2𝑖𝑖𝑜𝑜𝜎𝜎2 + 𝜎𝜎4)
2𝑁𝑁𝑖𝑖𝑜𝑜𝜎𝜎2 − |𝛽𝛽|𝑖𝑖𝑜𝑜𝜎𝜎2 + 𝜎𝜎4 

from which it follows that (𝑁𝑁 − 1)𝜎𝜎4 + |𝛽𝛽|𝑖𝑖𝑜𝑜𝜎𝜎2 ≥ 0. Clearly, the ratio 𝐹𝐹𝑃𝑃𝑦𝑦/𝐹𝐹𝑐𝑐is always greater than 
unity. We therefore conclude that, in the absence of fixed-pattern noise, the projection-based shift 
estimator is superior to the 2-D cross-correlation shift estimator when estimating shifts in the 
horizontal direction. A similar conclusion can be made for the estimate of the vertical shift. 

We now address the analysis of the sensor model that contains both temporal and fixed-pattern noise. 
As before we set w=β in the expression for 𝐹𝐹𝑐𝑐. After some algebra, we obtain the two equations shown 
at the bottom of the page. We now choose the combination of z,α,β that minimizes the ratio 𝐹𝐹𝑃𝑃𝑦𝑦/𝐹𝐹𝑐𝑐. 
(The delta functions can be eliminated from the figure-of-merit if we choose the values for them that 
make 𝐹𝐹𝑃𝑃𝑦𝑦 as small as possible and 𝐹𝐹𝑐𝑐 as large as possible.) After some algebra, we obtain the final result  

𝐹𝐹𝑃𝑃𝑦𝑦(𝑧𝑧,𝛼𝛼,𝛽𝛽)
𝐹𝐹𝑐𝑐(𝑧𝑧,𝛼𝛼,𝛽𝛽)

≥
(𝑖𝑖𝑜𝑜2 − 4𝜎𝜎𝑏𝑏2𝑖𝑖𝑜𝑜 + 4𝜎𝜎𝑏𝑏2)(2𝑖𝑖𝑜𝑜𝑁𝑁𝜎𝜎2 + 3𝑖𝑖𝑜𝑜𝑁𝑁𝜎𝜎𝑏𝑏2 + 𝑁𝑁(𝜎𝜎4 + 𝜎𝜎𝑏𝑏4))

𝑖𝑖𝑜𝑜2(𝑁𝑁𝑖𝑖𝑜𝑜(𝜎𝜎2 + 2𝜎𝜎𝑏𝑏2) − 𝑖𝑖𝑜𝑜𝜎𝜎𝑏𝑏2 + 𝜎𝜎4 + 3𝜎𝜎𝑏𝑏4)
.
 

From the above bound we infer that if 𝑖𝑖𝑜𝑜 ≥ 12𝜎𝜎𝑏𝑏2, the ratio 𝐹𝐹𝑃𝑃𝑦𝑦/𝐹𝐹𝑐𝑐  is always greater than one. The 
same conclusion holds for the ratio of 𝐹𝐹𝑝𝑝𝑥𝑥/𝐹𝐹𝑐𝑐. This shows that the projection-based shift estimator will 
have a higher SNR than the 2-D cross-correlation shift estimator whenever 𝑖𝑖𝑜𝑜 ≥ 12𝜎𝜎𝑏𝑏2. 

SECTION IV. 
Simulation Results 
In this section, a set of simulations is generated to demonstrate the validity of the conclusions 
established in the previous section. The first set of simulations feature an image of a simulated star 
field. This image exhibits no spatial correlation (approximating the uncorrelated image model 
considered in the previous section) and is corrupted with temporal Poissonian noise. (We use the 
Poisson model as a convenient approximation that captures the signal-dependent nature of temporal 
noise especially in cases when shot noise dominates the sensor read-out noise.) These images are 
shown in Fig. 2. The operation of generating two circularly shifted versions of the scene is repeated 100 
times and shift estimates are generated using both the projection-based and 2-D correlation methods. 
These shift estimation algorithms are implemented exactly as described in Section II with a search 
range of seven pixels. The registration parameters α and β are integers as are the shifts generated in 
the simulation. The cross-correlations are computed and the maximum is chosen over the entire range 
of shifts for both algorithms. Although real sequences of data generally possess noninteger and 
noncircular shifts, these assumptions are adequate for comparing the performance of the shift 
estimation techniques. 



The shift estimates are compared with the known synthetic shifts for accuracy. The shift estimation 
error in pixels is computed by squaring the difference between the known synthetic shifts and the 
estimated shifts and summing this squared error over all frames. The result of this summation is then 
divided by the number of frames used in the test and the square root of this result is taken as the 
average error with units of pixels. The 100 trials are used to establish the statistical behavior of the 
shift estimation techniques. The results are shown in Table I. The performance of the two shift 
estimators are shown as a function of the SNR. The SNR is defined as the amplitude of the signal 
divided by the standard deviation of the noise. The peak signal-to-noise ratio (PSNR) in an image is 
then the highest SNR achieved within the frame. These results verify that indeed the 2-D cross-
correlation shift estimator outperforms the projection-based shift estimator when the scene is spatially 
uncorrelated. 

Next, a fixed-pattern noise is added to each frame and the standard deviation of the fixed-pattern 
noise σ2b is varied in relation to the standard deviation of the temporal noise. Two sample images with 
fixed-pattern noise are shown in Fig. 3. The performance of the two estimators in the presence of 
fixed-pattern noise is shown in Table II averaged over 100 trials. The PSNR of the data is fixed at ten 
and the ratio of fixed-pattern noise variance to temporal noise variance is varied. These results again 
verify that the lack of correlation in the scene causes the 2-D cross-correlation shift estimator to 
outperform the projection-based shift estimator. In general, we have observed that the performance 
of the two estimators becomes comparable as the fixed-pattern noise variance increases. The next set 
of data is generated in the same manner as in the previous simulations using the scene shown in Fig. 4, 
which possesses strong spatial correlation. This scene was chosen because its auto-correlation is 
similar to the linear auto-correlation model used in Section III. The auto-correlation function of the 
scene is shown in Fig. 5.  



 

 

Fig. 4. Cloud scene used to generate the data used to analyze the behavior of the shift estimators in 
the presence of high spatial correlation. 
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Fig. 5. Auto-correlation function of the scene used to test the performance of shift estimation in the 
presence of high spatial correlation. 

TABLE II PERFORMANCE OF THE PROJECTION-BASED ESTIMATOR (1-D) VERSUS THE 2-D CROSS-
CORRELATION ESTIMATOR (2-D) IN THE PRESENCE OF BOTH FIXED-PATTERN AND TEMPORAL NOISE. 
NOTE THAT THE IMAGE POSSESSES No SPATIAL CORRELATION IN THIS EXAMPLE 
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Estimator  𝜎𝜎𝑏𝑏 /𝜎𝜎  Error in Pixels 
1-D .05 .01 
2-D .05 0 
1-D .2 .27 
2-D .2 .3 
1-D .5 .67 
2-D .5 .67 

 

at the projection-based shift estimator outperforms the 2-D cross-correlation shift estimator. Finally, 
Table IV shows the performance of the two estimators in the presence of fixed-pattern noise. The 
PSNR is fixed at 26 when the fixed-pattern noise is small with respect to the temporal noise. The fixed-
pattern noise variance is adjusted to be a fraction of the temporal noise variance to produce the 
various ratios of fixed-pattern to temporal noise variance shown in Table IV. These results show that 
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the performance improvement achieved using the projection-based shift estimator is more significant 
when fixed-pattern noise is a serious concern. 

To demonstrate the correlation between the simulations and the analytic expressions for the figures-
of-merit, the magnitudes of FPy and Fc are plotted as a function of σb (σ and io are held constant). If 
we choose io=100,σ=10,α=0,w=β=0, and z=1, then Fig. 6 shows the result of varying the fixed-pattern 
standard deviation σb. Note that over the whole range of fixed-pattern noise standard deviations the 
value of FPy is higher than Fc. 

SECTION V. 

Results Using Real Image Sequences 
The proposed algorithm is tested on two sets of measured data in this section.  

TABLE III PERFORMANCE OF THE PROJECTION-BASED ESTIMATOR (1-D) VERSUS THE 2-D CROSS-
CORRELATION ESTIMATOR (2-D) WHEN SPATIAL CORRELATION IS PRESENT IN THE IMAGE 
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Estimator  Peak SNR Error in Pixels 

1-D 26 .1 

2-D 26 .3 

1-D 10 .2 

2-D 10 .45 

1-D 7 .45 

2-D 7 .5 

 

TABLE IV PERFORMANCE OF THE PROJECTION-BASED ESTIMATOR (1-D) AND THE 2-D CROSS-
CORRELATION ESTIMATOR (2-D) AGAINST TEMPORAL AND FIXED-PATTERN NOISE WHEN SPATIAL 
CORRELATION IS PRESENT IN THE IMAGE 
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Estimator  𝜎𝜎𝑏𝑏 /𝜎𝜎  Error in Pixels 

1-D .05 .1 

2-D .05 .3 

1-D 4 .3 

2-D 4 .95 

1-D 12 .5 

2-D 12 1.5 

 

 

 

Fig. 6. Plot showing the value of the figures-of-merit FPy and Fc as a function of fixed-pattern noise 
standard deviation when io=100,σ=10,α=0,w=β=0, and z=1. 
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Fig. 7. Two sample frames from a sequence of infrared video data (top). Frame one of the sequence at 
a PSNR of 2 (bottom left) and PSNR of 20 (bottom right). 
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Fig. 8. Root mean-squared registration error performance of the projection-based technique (dotted 
line) and the 2-D cross-correlator (solid line) as a function of peak fixed-pattern SNR for the infrared 
data sequence. This demonstrates the improved noise-rejection capability of the projection-based 
technique. 
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Fig. 9. Root mean-squared registration error performance of the projection-based technique (dotted 
line) and the 2-D cross-correlator (solid line) as a function of peak temporal SNR for the infrared data 
sequence. 

Using measured data to test the accuracy of an image registration algorithm poses a distinct problem 
in that the true motion found in any real sequence of video is unknown without the use of a 
registration algorithm. In this analysis, we will measure the motion in a real sequence of data collected 
at a high SNR using the 2-D cross-correlator. This set of registration parameters are then used to 
measure error in both algorithms as noise is artificially added to the video. This process will allow the 
error in the shift estimation process to be measured using sequences of video that do not contain just 
simple translations, but other types of motion and effects that change the scene between 
observations. 

The first sequence of video is taken with an infrared camera operating in the short-wave band (3.0–5.0 
μm wavelengths). Two sample frames from this 80-frame sequence are shown in Fig. 7. The 2-D cross-
correlator is used to measure the shifts between frames of the sequence in integer amounts. This set 
of shifts is used as the true shifts for purposes of measuring the registration error when noise is added 
to the video sequence. In the first test, fixed-pattern noise is added to the sequence in varying 
amounts to produce 19 sequences each possessing a different PSNR between 2 and 20. Fig. 7 shows 
frame one of the sequence at a SNR of 2 and 20. Fig. 8 shows the error performance of the projection-
based technique (dotted line) and the 2-D cross-correlator (solid line) plotted as a function of the PSNR 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/21014/974571/974571-fig-9-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/21014/974571/974571-fig-9-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/83/21014/974571/974571-fig-9-source-large.gif


in the data. The error metric used in this study is the root mean-squared error in units of pixels. Finally, 
Fig. 9 shows the performance of the algorithms as a function of the PSNR when the noise is temporal in 
nature (changes from frame to frame in the sequence). In both cases it is clear that the projection-
based technique produces consistently lower registration root mean-squared error. 

The second sequence of video is taken with a visible camera of the planet Jupiter through severe 
atmospheric turbulence. This type of turbulence changes the impulse response of the imaging system 
between observations, which will cause the image to change in its appearance from frame to frame. 
Two sample frames from this 40-frame sequence are shown in Fig. 10. The 2-D cross-correlator is again 
used to measure the shifts between frames of the sequence in integer amounts. In the first test, 
temporal noise is added to the sequence in varying amounts to produce ten video sequences each 
possessing a different PSNR between 1 and 10. Fig. 10 shows frame one of the sequence at a SNR of 1 
and 10. Fig. 11shows the error performance of the projection-based technique (dotted line) and the 2-
D cross-correlator (solid line) plotted as a function of the peak temporal SNR in the data. Finally, Fig. 12 
shows the performance of the algorithms as a function of the PSNR when fixed-pattern noise is added 
to the data. In both cases it is clear that the projection-based technique produces consistently lower 
root mean-squared registration error. 

SECTION VI. 
Conclusion 
Image registration of adjacent frames in a video sequence is often desired in order to take advantage 
of temporal correlation in images. This process can be very computationally intensive relative to the 
scale dictated by real time processing. The projection-based algorithm reported here has the potential 
of alleviating much of the computational burden of image registration by operating only on vectors as 
opposed to images. The proposed technique also has the benefit of being more robust against 
temporal and especially fixed-pattern noise, which can be a great impediment to achieving accurate 
image registration. In this paper, the performance of the projection-based shift estimator is compared 
to the performance of the 2-D cross-correlation shift estimator. A significant conclusion drawn from 
this work is that the relative performance of the two estimators varies depending on the auto-
correlation function of the scene. 

The two auto-correlation models considered in the analysis show the diverse dependence of these 
algorithms on the degree of spatial correlation in the image. Scenes that possess significant neighbor-
to-neighbor correlation over large neighborhoods will allow the projection-based shift estimator to 
perform better than the 2-D cross-correlator, while scenes whose pixels are uncorrelated allow the 2-D 
cross-correlator to produce superior results. Both estimators work well when the standard deviation of 
the noise is small with respect to the contrast in the scene. The decision of which estimator to use 
would be a simple one at high SNRs because the projection-based technique, as described in Section II, 
operates on 4N pixels in comparison to N2 pixels. The use of the 2-D cross-correlation technique is only 
warranted in cases when the SNR is extremely low and when the image lacks spatial correlation. 

The potential applications for the projection-based algorithm are many and varied. Future work with 
the projection technique may involve adapting it for use with other geometric transformations such as 
rotation and scaling. The algorithm's tolerance to small rotations and scale changes has yet to be 



tested. Perhaps the most important application is in the field of real-time adaptive optics. This 
algorithm could be used to control a line-of-sight mirror within an optical system at kilohertz rates or 
provide the shift estimation information generated in Hartman sensors [20]. 

A Derivation of Inequality (10) 

In this example, we assume a image auto-correlation function of the form 𝐄𝐄[𝑖𝑖(𝑥𝑥,𝑦𝑦)𝑖𝑖(𝑠𝑠 + 𝑥𝑥, 𝑡𝑡 + 𝑦𝑦)] =
𝑖𝑖𝑜𝑜𝛿𝛿(𝑠𝑠, 𝑡𝑡).  

 

 

Fig. 10. (Top) Two sample frames from a sequence of video of the planet Jupiter, (bottom left) frame 
one of the sequence at a PSNR of 1, and (bottom right) PSNR of 10. 
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Fig. 11. Root mean-squared registration error performance of the projection-based technique (dotted 
line) and the 2-D cross-correlator (solid line) as a function of peak temporal SNR for the Jupiter data 
sequence. 
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Fig. 12. Root mean-squared registration error performance of the projection-based technique (dotted 
line) and the 2-D cross-correlator (solid line) as a function of peak fixed-pattern SNR for the Jupiter 
data sequence. 

With this auto-correlation model, the expression for Fc becomes  

𝐹𝐹𝑐𝑐 (𝑧𝑧,𝑤𝑤,𝛼𝛼,𝛽𝛽)

=
�𝑁𝑁2𝑖𝑖𝑜𝑜�1− 𝛿𝛿(𝑧𝑧 − 𝛼𝛼,𝑤𝑤 − 𝛽𝛽)� − 𝑁𝑁2𝜎𝜎𝑏𝑏2�𝛿𝛿(𝑧𝑧,𝑤𝑤) − 𝛿𝛿(𝛼𝛼,𝛽𝛽)��2

4𝑁𝑁2𝑖𝑖𝑜𝑜(𝜎𝜎2 + 𝜎𝜎𝑏𝑏2(1 + 𝛿𝛿(𝛼𝛼,𝛽𝛽)) + 4𝑁𝑁2(𝜎𝜎4 + (1 + 2𝛿𝛿(𝑧𝑧,𝑤𝑤))𝜎𝜎𝑏𝑏4)
.
 

We wish to choose the combination of integer values of α,β,z, and w that minimizes Fc without 
choosing (𝑧𝑧,𝑤𝑤) = (𝛼𝛼,𝛽𝛽). The condition that (𝑧𝑧,𝑤𝑤) ≠ (𝛼𝛼,𝛽𝛽) arises from the definition of the figure-of-
merit. The numerator of the figure-of-merit was defined as the peak of the image auto-correlation 
function minus the auto-correlation value of for some shift other than the peak value. The numerator 
measures the shift estimation algorithm's ability to distinguish the peak from other candidate shift 
values. If we evaluate the figure-of-merit for (𝑧𝑧,𝑤𝑤) = (𝛼𝛼,𝛽𝛽), then the numerator no longer measures 
the difference between the value at the correct shift and an erroneous shift and therefore defeats the 
purpose of using the figure-of-merit. So in minimizing the numerator subject to the constraint that 
(𝑧𝑧,𝑤𝑤) ≠ (𝛼𝛼,𝛽𝛽), the impulse function 𝛿𝛿(𝑧𝑧 − 𝛼𝛼,𝑤𝑤 − 𝛽𝛽) goes to zero. The term −𝑁𝑁2𝜎𝜎𝑏𝑏2�𝛿𝛿(𝑧𝑧,𝑤𝑤) −
𝛿𝛿(𝛼𝛼,𝛽𝛽)� is minimized if 𝛿𝛿(𝑧𝑧,𝑤𝑤) is equal to one and 𝛿𝛿(𝛼𝛼,𝛽𝛽) is equal to zero. This is accomplished if 
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(𝑧𝑧,𝑤𝑤) ≠ (0, 0)and (𝛼𝛼,𝛽𝛽) ≠ (0, 0). Effecting these changes in the numerator gives rise to the following 
inequality:  

Fc≥(z,w,α,β)(N2io−N2σ2b)24N2io(σ2+σ2b(1+δ(α,β))+4N2(σ4+(1+2δ(z,w))σ4b) 

View Source  Next, we wish to maximize the denominator or determine an upper bound for it. 
Because all the terms in the denominator are strictly positive, if we choose them to be as large as 
possible, this will serve as an upper bound for the denominator. If all the impulse functions take on 
their maximum value, then the following inequality results:  

𝐹𝐹𝑐𝑐 (𝑧𝑧,𝑤𝑤,𝛼𝛼,𝛽𝛽)

≥
(𝑁𝑁2𝑖𝑖𝑜𝑜 − 𝑁𝑁2𝜎𝜎𝑏𝑏2)2

4𝑁𝑁2𝑖𝑖𝑜𝑜(𝜎𝜎2 + 𝜎𝜎𝑏𝑏2(1 + 𝛿𝛿(𝛼𝛼,𝛽𝛽)) + 4𝑁𝑁2(𝜎𝜎4 + (1 + 2𝛿𝛿(𝑧𝑧,𝑤𝑤))𝜎𝜎𝑏𝑏4)
 

For the projection-based estimator, the vertical-direction figure-of-merit can be computed and 
expressed as  

𝐹𝐹𝑃𝑃𝑦𝑦 (𝑧𝑧,𝛼𝛼,𝛽𝛽)

=
(𝑁𝑁2𝑖𝑖𝑜𝑜(1− 𝛿𝛿(𝑧𝑧 − 𝛼𝛼))− 𝑁𝑁2𝜎𝜎𝑏𝑏2(𝛿𝛿(𝑧𝑧) − 𝛿𝛿(𝛼𝛼)))2

4𝑁𝑁3𝑖𝑖𝑜𝑜(𝜎𝜎2 + 𝜎𝜎𝑏𝑏2(1 + 𝛿𝛿(𝛼𝛼,𝛽𝛽)) + 4𝑁𝑁3(𝜎𝜎4 + (1 + 2𝛿𝛿(𝑧𝑧))𝜎𝜎𝑏𝑏4)
.
 

Applying the constraint for this figure-of-merit that 𝑧𝑧 ≠ 𝛼𝛼, results in  

𝐹𝐹𝑃𝑃𝑦𝑦 (𝑧𝑧,𝛼𝛼,𝛽𝛽)

=
(𝑁𝑁2𝑖𝑖𝑜𝑜 − 𝑁𝑁2𝜎𝜎𝑏𝑏2(𝛿𝛿(𝑧𝑧) − 𝛿𝛿(𝛼𝛼)))2

4𝑁𝑁3𝑖𝑖𝑜𝑜(𝜎𝜎2 + 𝜎𝜎𝑏𝑏2(1 + 𝛿𝛿(𝛼𝛼,𝛽𝛽)) + 4𝑁𝑁3(𝜎𝜎4 + (1 + 2𝛿𝛿(𝑧𝑧))𝜎𝜎𝑏𝑏4)
.
 

If we choose 𝛿𝛿(𝑧𝑧) = 0 and 𝛿𝛿(𝛼𝛼) = 1, then the numerator is minimized. Because all the terms in the 
denominator are nonnegative, if we choose the impulse functions to be equal to zero, then this will 
serve as a lower bound for the value of the denominator. Now that the numerator is as large as 
possible and the denominator is as small as possible, the figure-of-merit is bounded above in the 
following inequality:  

𝐹𝐹𝑃𝑃𝑦𝑦(𝑧𝑧,𝛼𝛼,𝛽𝛽) ≤
(𝑁𝑁2𝑖𝑖𝑜𝑜 + 𝑁𝑁2𝜎𝜎𝑏𝑏2)2

4𝑁𝑁3𝑖𝑖𝑜𝑜(𝜎𝜎2 + 𝜎𝜎𝑏𝑏2) + 4𝑁𝑁3(𝜎𝜎4 + 𝜎𝜎𝑏𝑏4). 

Hence, by combining the above bounds, we obtain a lower bound for the ratio 𝐹𝐹𝑐𝑐/𝐹𝐹𝑃𝑃𝑦𝑦 

𝐹𝐹𝑐𝑐(𝑧𝑧,𝑤𝑤,𝛼𝛼,𝛽𝛽)
𝐹𝐹𝑃𝑃𝑦𝑦(𝑧𝑧,𝛼𝛼,𝛽𝛽)

≥
𝑁𝑁(𝑖𝑖𝑜𝑜 − 𝜎𝜎𝑏𝑏2)2(𝑖𝑖𝑜𝑜(𝜎𝜎2 + 2𝜎𝜎𝑏𝑏2) + 𝜎𝜎4 + 3𝜎𝜎𝑏𝑏4)

(𝑖𝑖𝑜𝑜 + 𝜎𝜎𝑏𝑏2)2(𝑖𝑖𝑜𝑜(𝜎𝜎2 + 𝜎𝜎𝑏𝑏2) + 𝜎𝜎4 + 𝜎𝜎𝑏𝑏4)
.
 

The term in the numerator (𝑖𝑖𝑜𝑜(𝜎𝜎2 + 2𝜎𝜎𝑏𝑏2) + 𝜎𝜎4 + 3𝜎𝜎𝑏𝑏4) is always larger than the term 
(𝑖𝑖𝑜𝑜(𝜎𝜎2 + 𝜎𝜎𝑏𝑏2) + 𝜎𝜎4 + 𝜎𝜎𝑏𝑏4). This means that the inequality can be reduced to the following expression:  

𝐹𝐹𝑐𝑐(𝑧𝑧,𝑤𝑤,𝛼𝛼,𝛽𝛽)
𝐹𝐹𝑃𝑃𝑦𝑦(𝑧𝑧,𝛼𝛼,𝛽𝛽) ≥

𝑁𝑁(𝑖𝑖𝑜𝑜 − 𝜎𝜎𝑏𝑏2)2

(𝑖𝑖𝑜𝑜 + 𝜎𝜎𝑏𝑏2)2 . 



 

If the ratio of the figures-of-merit is greater than one then the denominator subtracted from the 
numerator should be greater than zero  

(𝑁𝑁 − 1)(𝑖𝑖𝑜𝑜2 + 𝜎𝜎𝑏𝑏4) − (2𝑁𝑁 + 2)𝑖𝑖𝑜𝑜𝜎𝜎𝑏𝑏2 ≥ 0. 

This inequality is always true if (𝑁𝑁 − 1)𝑖𝑖𝑜𝑜 > 2(𝑁𝑁 + 1)𝜎𝜎𝑏𝑏2. For large N, if 𝑖𝑖𝑜𝑜 > 2𝜎𝜎𝑏𝑏2then (𝑁𝑁 − 1)𝑖𝑖𝑜𝑜 >
2(𝑁𝑁 + 1)𝜎𝜎𝑏𝑏2. This condition simply states that the average image intensity must be greater than twice 
the standard deviation of the fixed-pattern noise. Because the condition is met in most practical 
situations, (𝐹𝐹𝑐𝑐(𝑧𝑧,𝑤𝑤,𝛼𝛼,𝛽𝛽))/(𝐹𝐹𝑃𝑃𝑦𝑦(𝑧𝑧,𝛼𝛼,𝛽𝛽)) ≥ 1. 
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