86 research outputs found
Liver segmentation using marker controlled watershed transform
The largest organ in the body is the liver and primarily helps in metabolism and detoxification. Liver segmentation is a crucial step in liver cancer detection in computer vision-based biomedical image analysis. Liver segmentation is a critical task and results in under-segmentation and over-segmentation due to the complex structure of abdominal computed tomography (CT) images, noise, and textural variations over the image. This paper presents liver segmentation in abdominal CT images using marker-based watershed transforms. In the pre-processing stage, a modified double stage gaussian filter (MDSGF) is used to enhance the contrast, and preserve the edge and texture information of liver CT images. Further, marker controlled watershed transform is utilized for the segmentation of liver images from the abdominal CT images. Liver segmentation using suggested MDSGF and marker-based watershed transform help to diminish the under-segmentation and over-segmentation of the liver object. The performance of the proposed system is evaluated on the LiTS dataset based on Dice score (DS), relative volume difference (RVD), volumetric overlapping error (VOE), and Jaccard index (JI). The proposed method gives (Dice score of 0.959, RVD of 0.09, VOE of 0.089, and JI of 0.921)
Liver Segmentation and Liver Cancer Detection Based on Deep Convolutional Neural Network: A Brief Bibliometric Survey
Background: This study analyzes liver segmentation and cancer detection work, with the perspectives of machine learning and deep learning and different image processing techniques from the year 2012 to 2020. The study uses different Bibliometric analysis methods.
Methods: The articles on the topic were obtained from one of the most popular databases- Scopus. The year span for the analysis is considered to be from 2012 to 2020. Scopus analyzer facilitates the analysis of the databases with different categories such as documents by source, year, and county and so on. Analysis is also done by using different units of analysis such as co-authorship, co-occurrences, citation analysis etc. For this analysis Vosviewer Version 1.6.15 is used.
Results: In the study, a total of 518 articles on liver segmentation and liver cancer were obtained between the years 2012 to 2020. From the statistical analysis and network analysis it can be concluded that, the maximum articles are published in the year 2020 with China is the highest contributor followed by United States and India.
Conclusions: Outcome from Scoups database is 518 articles with English language has the largest number of articles. Statistical analysis is done in terms of different parameters such as Authors, documents, country, affiliation etc. The analysis clearly indicates the potential of the topic. Network analysis of different parameters is also performed. This also indicate that there is a lot of scope for further research in terms of advanced algorithms of computer vision, deep learning and machine learning
Algebraic Branching Programs, Border Complexity, and Tangent Spaces
Nisan showed in 1991 that the width of a smallest noncommutative single-(source,sink) algebraic branching program (ABP) to compute a noncommutative polynomial is given by the ranks of specific matrices. This means that the set of noncommutative polynomials with ABP width complexity at most is Zariski-closed, an important property in geometric complexity theory. It follows that approximations cannot help to reduce the required ABP width. It was mentioned by Forbes that this result would probably break when going from single-(source,sink) ABPs to trace ABPs. We prove that this is correct. Moreover, we study the commutative monotone setting and prove a result similar to Nisan, but concerning the analytic closure. We observe the same behavior here: The set of polynomials with ABP width complexity at most is closed for single-(source,sink) ABPs and not closed for trace ABPs. The proofs reveal an intriguing connection between tangent spaces and the vector space of flows on the ABP. We close with additional observations on VQP and the closure of VNP which allows us to establish a separation between the two classes
Discovering the roots: Uniform closure results for algebraic classes under factoring
Newton iteration (NI) is an almost 350 years old recursive formula that
approximates a simple root of a polynomial quite rapidly. We generalize it to a
matrix recurrence (allRootsNI) that approximates all the roots simultaneously.
In this form, the process yields a better circuit complexity in the case when
the number of roots is small but the multiplicities are exponentially
large. Our method sets up a linear system in unknowns and iteratively
builds the roots as formal power series. For an algebraic circuit
of size we prove that each factor has size at most a
polynomial in: and the degree of the squarefree part of . Consequently,
if is a -hard polynomial then any nonzero multiple
is equally hard for arbitrary positive 's, assuming
that is at most .
It is an old open question whether the class of poly()-sized formulas
(resp. algebraic branching programs) is closed under factoring. We show that
given a polynomial of degree and formula (resp. ABP) size
we can find a similar size formula (resp. ABP) factor in
randomized poly()-time. Consequently, if determinant requires
size formula, then the same can be said about any of its
nonzero multiples.
As part of our proofs, we identify a new property of multivariate polynomial
factorization. We show that under a random linear transformation ,
completely factors via power series roots. Moreover, the
factorization adapts well to circuit complexity analysis. This with allRootsNI
are the techniques that help us make progress towards the old open problems,
supplementing the large body of classical results and concepts in algebraic
circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \&
Burgisser, FOCS 2001).Comment: 33 Pages, No figure
Teledentistry: A Boon in Indian Scenario
An amalgamation of telecommunication and dentistry is known as ‘Teledentistry’, which involves switch over the clinical information in remote areas for diagnosis, consultation, health education and treatment planning. The accessibility of dental care at low cost by all people has ton increased by teledentistry. It also has an immense perspective to overcome the disparities in oral healthcare between rural and urban population. Thus the aim behind to review this article is to establish the essential role of Teledentistry in Indian Scenari. The literature for this review obtained from published articles, online manuals and books
Adrenal Venous Sampling in Primary Aldosteronism: Single-Centre Experience from Western India
INTRODUCTION: The protocols and criteria used for adrenal venous sampling (AVS) differ across centres. There are no studies from the Indian subcontinent describing AVS-based outcomes in primary aldosteronism (PA). We aim to describe our experience from a single centre.
METHODS: Retrospective records from 2018 to 2020 of patients with confirmed PA who underwent AVS were reviewed. Clinical, imaging, AVS data and outcomes (as per PASO criteria) were recorded. AVS was performed by sequential sampling with cosyntropin stimulation with intraprocedural cortisol and cut-off of selectivity \u3e5 and lateralization \u3e4 by a single radiologist.
RESULTS: Fifteen patients with median age of 50 years (41-58) and duration of hypertension of 156 (36-204) months were included. Ten had grade 3 hypertension, 13 had hypokalaemia and 3 had hypokalaemic paralysis. On CT scan, eight patients had bilateral adrenal lesions, four had unilateral adenoma and three patients had normal adrenals. AVS was bilaterally successful in all and showed lateralization of disease in 10 patients and was bilateral in the remaining 5 patients. Overall concordance of CT and AVS was 5/15 (33.3%). Among seven patients who underwent surgery, complete clinical success was seen in two and partial clinical success in the remaining five. Complete biochemical success was seen in two and partial in one. There were no major complications.
CONCLUSIONS: AVS performed by a single radiologist with defined protocols has a good success rate. AVS has additional value over CT scan in lateralization, especially when CT shows bilateral disease
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk
Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis
Funding Information: GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file : Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services. Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe
- …