15 research outputs found

    Angiotensin 1-7 Rescues Cognitive Decline and Neuronal Loss Following Traumatic Brain Injury in Mice

    Get PDF
    Purpose of study: Traumatic brain injury (TBI) is a leading cause of death and disability in the U.S., accounting for approximately 30% of all injury deaths and 3 million TBI-related emergency visits yearly. There is limited research in the area of mitigating the post-inflammatory effects of non-fatal traumatic brain injury. Angiotensin 1-7, an endogenous peptide that acts on the MAS receptor, has recently shown to be anti-inflammatory, anti-oxidative, and vasodilatory unlike its relative, angiotensin II. We asked the question of whether Ang 1-7 modulates neuroinflammation and improves cognitive function in mice following traumatic brain injury. Methods: A controlled cortical impactor with a retractable piston was used to model a mild traumatic brain injury (mTBI). Mice either received Ang 1-7 (1 mg/kg, n=12) or normal saline (0.9%, n=12) 2 hours post-TBI and 30 minutes prior to novel objection recognition (NOR) testing on days 1, 3, 7, 14 post-TBI with tissue harvesting for hematoxylin and eosin (H&E) staining. Results: Between-group studies showed that Ang 1-7 treated mice showed significantly higher NOR ratios compared to that of the control group. Additionally, statistically significant higher neuronal count in the ipsilateral hippocampal and cortical tissues days 1, 3, 7, and 14 post-TBI was observed in the Ang-1-7 group. Conclusion: Together, these results demonstrate that Ang 1-7 significantly improves cognitive function and rescues further cell loss against secondary intrinsic injury following extrinsic mTBI and suggest that it may be a novel therapy to the effects of mild traumatic brain injury

    The BIG (brain injury guidelines) project: Defining the management of traumatic brain injury by acute care surgeons

    Get PDF
    BACKGROUND: It is becoming a standard practice that any ''positive'' identification of a radiographic intracranial injury requires transfer of the patient to a trauma center for observation and repeat head computed tomography (RHCT). The purpose of this study was to define guidelinesVbased on each patient's history, physical examination, and initial head CT findingsVregarding which patients require a period of observation, RHCT, or neurosurgical consultation. METHODS: In our retrospective cohort analysis, we reviewed the records of 3,803 blunt traumatic brain injury patients during a 4-year period. We classified patients according to neurologic examination results, use of intoxicants, anticoagulation status, and initial head CT findings. We then developed brain injury guidelines (BIG) based on the individual patient's need for observation or hospitalization, RHCT, or neurosurgical consultation. RESULTS: A total of 1,232 patients had an abnormal head CT finding. In the BIG 1 category, no patients worsened clinically or radiographically or required any intervention. BIG 2 category had radiographic worsening in 2.6% of the patients. All patients who required neurosurgical intervention (13%) were in BIG 3. There was excellent agreement between assigned BIG and verified BIG. J statistic is equal to 0.98. CONCLUSION: We have proposed BIG based on patient's history, neurologic examination, and findings of initial head CT scan. These guidelines must be used as supplement to good clinical examination while managing patients with traumatic brain injury. Prospective validation of the BIG is warranted before its widespread implementation. (J Trauma Acute Care Surg. 2014;76: 965Y969

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Resuscitating the Endothelial Glycocalyx in Trauma and Hemorrhagic Shock

    No full text
    The endothelium is lined by a protective mesh of proteins and carbohydrates called the endothelial glycocalyx (EG). This layer creates a negatively charged gel-like barrier between the vascular environment and the surface of the endothelial cell. When intact the EG serves multiple functions, including mechanotransduction, cell signaling, regulation of permeability and fluid exchange across the microvasculature, and management of cell-cell interactions. In trauma and/or hemorrhagic shock, the glycocalyx is broken down, resulting in the shedding of its individual components. The shedding of the EG is associated with increased systemic inflammation, microvascular permeability, and flow-induced vasodilation, leading to further physiologic derangements. Animal and human studies have shown that the greater the severity of the injury, the greater the degree of shedding, which is associated with poor patient outcomes. Additional studies have shown that prioritizing certain resuscitation fluids, such as plasma, cryoprecipitate, and whole blood over crystalloid shows improved outcomes in hemorrhaging patients, potentially through a decrease in EG shedding impacting downstream signaling. The purpose of the following paragraphs is to briefly describe the EG, review the impact of EG shedding and hemorrhagic shock, and begin entertaining the notion of directed resuscitation. Directed resuscitation emphasizes transitioning from macroscopic 1:1 resuscitation to efforts that focus on minimizing EG shedding and maximizing its reconstitution

    Developing a National Trauma Research Action Plan (NTRAP): Results from the Geriatric Research Gap Delphi Survey.

    No full text
    BACKGROUND: Treating older trauma patients requires a focus on the confluence of age-related physiological changes and the impact of the injury itself. Therefore, the primary way to improve the care of geriatric trauma patients is through the development of universal, systematic multidisciplinary research. To achieve this, the Coalition for National Trauma Research has developed the National Trauma Research Action Plan that has generated a comprehensive research agenda spanning the continuum of geriatric trauma care from prehospital to rehabilitation. METHODS: Experts in geriatric trauma care and research were recruited to identify current gaps in clinical geriatric research, generate research questions, and establish the priority of these questions using a consensus-driven Delphi survey approach. Participants were identified using established Delphi recruitment guidelines ensuring heterogeneity and generalizability. On subsequent surveys, participants were asked to rank the priority of each research question on a 9-point Likert scale, categorized to represent low-, medium-, and high-priority items. The consensus was defined as \u3e60% of panelists agreeing on the priority category. RESULTS: A total of 24 subject matter experts generated questions in 109 key topic areas. After editing for duplication, 514 questions were included in the priority ranking. By Round three, 362 questions (70%) reached 60% consensus. Of these, 161 (44%) were High, 198 (55%) Medium, and 3 (1%) Low priority. CONCLUSIONS: Among the questions prioritized as high priority, questions related to three types of injuries (i.e., rib fracture, traumatic brain injury, and lower extremity injury) occurred with the greatest frequency.Among the 25 highest priority questions, the key topics with the highest frequency were pain management, frailty, and anticoagulation-related interventions. The most common types of research proposed were interventional clinical trials and comparative effectiveness studies, outcome research, and healthcare systems research. LEVEL OF EVIDENCE: IVType of StudyExpert consensus

    Prospective validation and application of the Trauma-Specific Frailty Index: Results of an American Association for the Surgery of Trauma multi-institutional observational trial.

    No full text
    BACKGROUND: The frailty index is a known predictor of adverse outcomes in geriatric patients. Trauma-Specific Frailty Index (TSFI) was created and validated at a single center to accurately identify frailty and reliably predict worse outcomes among geriatric trauma patients. This study aims to prospectively validate the TSFI in a multi-institutional cohort of geriatric trauma patients. METHODS: This is a prospective, observational, multi-institutional trial across 17 American College of Surgeons Levels I, II, and III trauma centers. All geriatric trauma patients (65 years and older) presenting during a 3-year period were included. Frailty status was measured within 24 hours of admission using the TSFI (15 variables), and patients were stratified into nonfrail (TSFI, ≤0.12), prefrail (TSFI, 0.13-0.25), and frail (TSFI, \u3e0.25) groups. Outcome measures included index admission mortality, discharge to rehabilitation centers or skilled nursing facilities (rehab/SNFs), and 3-month postdischarge readmissions, fall recurrences, complications, and mortality among survivors of index admission. RESULTS: A total of 1,321 geriatric trauma patients were identified and enrolled for validation of TSFI (nonfrail, 435 [33%]; prefrail, 392 [30%]; frail, 494 [37%]). The mean ± SD age was 77 ± 8 years; the median (interquartile range) Injury Severity Score was 9 (5-13). Overall, 179 patients (14%) had a major complication, 554 (42%) were discharged to rehab/SNFs, and 63 (5%) died during the index admission. Compared with nonfrail patients, frail patients had significantly higher odds of mortality (adjusted odds ratio [aOR], 1.93; p = 0.018), major complications (aOR, 3.55; p \u3c 0.001), and discharge to rehab/SNFs (aOR, 1.98; p \u3c 0.001). In addition, frailty was significantly associated with higher adjusted odds of mortality, major complications, readmissions, and fall recurrence at 3 months postdischarge ( p \u3c 0.05). CONCLUSION: External applicability of the TSFI (15 variables) was evident at a multicenter cohort of 17 American College of Surgeons trauma centers in geriatric trauma patients. The TSFI emerged as an independent predictor of worse outcomes, both in the short-term and 3-month postdischarge. LEVEL OF EVIDENCE: Prognostic and Epidemiological; Level III

    Assessing performance of the Healthcare Access and Quality Index, overall and by select age groups, for 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019

    No full text
    Health-care needs change throughout the life course. It is thus crucial to assess whether health systems provide access to quality health care for all ages. W measured the Healthcare Access and Quality (HAQ) Index overall and for select age groups in 204 locations from 1990 to 2019. For GBD 2019, HAQ Index construction methods were updated to use the arithmetic mean of scaled mortality-to-incidence ratios (MIRs) and risk-standardised death rates (RSDRs) for 32 causes of death that should not occur in the presence of timely, quality health care. Across locations and years, MIRs and RSDRs were scaled from 0 (worst) to 100 (best) separately, putting the HAQ Index on a different relative scale for each age group. We estimated absolute convergence for each group on the basis of whether the HAQ Index grew faster in absolute terms between 1990 and 2019 in countries with lower 1990 HAQ Index scores than countries with higher 1990 HAQ Index scores and by Socio-demographic Index (SDI) quintile. Interpretation Although major gaps remain across levels of social and economic development, convergence in the young group is an encouraging sign of reduced disparities in health-care access and quality. However, divergence in the working and post-working groups indicates that health-care access and quality is lagging at lower levels of social and economic development. To meet the needs of ageing populations, health systems need to improve health-care access and quality for working-age adults and older populations while continuing to realise gains among the young
    corecore