316 research outputs found

    Using the International Monitoring System infrasound network to study gravity waves

    Get PDF
    International audienceThe infrasound network of the International Monitoring System (IMS) has been designed for the detection of atmospheric pressure fluctuations produced in the [0.02 Hz-4 Hz] frequency range. However, the majority of the measuring chains used in this network also record pressure fluctuations at lower frequencies. The objective of this paper is to demonstrate the accuracy of IMS pressure measurements in the gravity wave band, whose period usually ranges from a few minutes to 24 hours. Application examples such as the monitoring of worldwide gravity wave time-spectra and the characterization of surface pressure fluctuations produced by atmospheric tides are presented. This study opens the way to the analysis of gravity waves using IMS data, which constitute a unique and accurate set of pressure measurements

    New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress

    Get PDF
    BACKGROUND: The vegetative plant vacuole occupies >90% of the volume in mature plant cells. Vacuoles play fundamental roles in adjusting cellular homeostasis and allowing cell growth. The composition of the vacuole and the regulation of its volume depend on the coordinated activities of the transporters and channels localized in the membrane (named tonoplast) surrounding the vacuole. While the tonoplast protein complexes are well studied, the tonoplast itself is less well described. To extend our knowledge of how the vacuole folds inside the plant cell, we present three-dimensional reconstructions of vacuoles from tobacco suspension cells expressing the tonoplast aquaporin fusion gene BobTIP26-1::gfp. RESULTS: 3-D reconstruction of the cell vacuole made possible an accurate analysis of large spanning folds of the vacuolar membrane under both normal and stressed conditions, and suggested interactions between surrounding plastids. Dynamic, high resolution 3-D pictures of the vacuole in tobacco suspension cells monitored under different growth conditions provide additional details about vacuolar architecture. The GFP-decorated vacuole is a single continuous compartment transected by tubular-like transvacuolar strands and large membrane surfaces. Cell culture under osmotic stress led to a complex vacuolar network with an increased tonoplast surface area. In-depth 3-D realistic inspections showed that the unity of the vacuole is maintained during acclimation to osmotic stress. Vacuolar unity exhibited during stress adaptation, coupled with the intimate associations of vacuoles with other organelles, suggests a physiological role for the vacuole in metabolism, and communication between the vacuole and organelles, respectively, in plant cells. Desiccation stress ensuing from PEG treatment generates "double" membrane structures closely linked to the tonoplast within the vacuole. These membrane structures may serve as membrane reservoirs for membrane reversion when cells are reintroduced to normal growth conditions. CONCLUSION: 3-D processing of a GFP-labeled tonoplast provides compelling visual constructions of the plant cell vacuole and elaborates on the nature of tonoplast folding and architecture. Furthermore, these methods allow real-time determination of membrane rearrangements during stresses

    Thermodynamic evidence of giant salt deposit formation by serpentinization: an alternative mechanism to solar evaporation

    Get PDF
    International audienceThe evaporation of seawater in arid climates is currently the main accepted driving mechanism for the formation of ancient and recent salt deposits in shallow basins. However, the deposition of huge amounts of marine salts, including the formation of tens of metres of highly soluble types (tachyhydrite and bischofite) during the Aptian in the South Atlantic and during the Messinian Salinity Crisis, are inconsistent with the wet and warm palaeoclimate conditions reconstructed for these periods. Recently, a debate has been developed that opposes the classic model of evaporite deposition and argues for the generation of salt by serpentinization. The products of the latter process can be called "dehydratites". The associated geochemical processes involve the consumption of massive amounts of pure water, leading to the production of concentrated brines. Here, we investigate thermodynamic calculations that account for high salinities and the production of soluble salts and MgCl2-rich brines through sub-seafloor serpentinization processes. Our results indicate that salt and brine formation occurs during serpentinization and that the brine composition and salt assemblages are dependent on the temperature and CO2 partial pressure. Our findings help explain the presence and sustainability of highly soluble salts that appear inconsistent with reconstructed climatic conditions and demonstrate that the presence of highly soluble salts probably has implications for global tectonics and palaeoclimate reconstructions

    Extremely high He isotope ratios in MORB-source mantle from the proto-Iceland plume

    Get PDF
    The high <sup>3</sup>He/<sup>4</sup>He ratio of volcanic rocks thought to be derived from mantle plumes is taken as evidence for the existence of a mantle reservoir that has remained largely undegassed since the Earth's accretion. The helium isotope composition of this reservoir places constraints on the origin of volatiles within the Earth and on the evolution and structure of the Earth's mantle. Here we show that olivine phenocrysts in picritic basalts presumably derived from the proto-Iceland plume at Baffin Island, Canada, have the highest magmatic <sup>3</sup>He/<sup>4</sup>He ratios yet recorded. A strong correlation between <sup>3</sup>He/<sup>4</sup>He and <sup>87</sup>Sr/<sup>86</sup>Sr, <sup>143</sup>Nd/<sup>144</sup>Nd and trace element ratios demonstrate that the <sup>3</sup>He-rich end-member is present in basalts that are derived from large-volume melts of depleted upper-mantle rocks. This reservoir is consistent with the recharging of depleted upper-mantle rocks by small volumes of primordial volatile-rich lower-mantle material at a thermal boundary layer between convectively isolated reservoirs. The highest <sup>3</sup>He/<sup>4</sup>He basalts from Hawaii and Iceland plot on the observed mixing trend. This indicates that a <sup>3</sup>He-recharged depleted mantle (HRDM) reservoir may be the principal source of high <sup>3</sup>He/<sup>4</sup>He in mantle plumes, and may explain why the helium concentration of the 'plume' component in ocean island basalts is lower than that predicted for a two-layer, steady-state model of mantle structure

    Evidence of multiple sorption modes in layered double hydroxides using Mo as structural probe

    Get PDF
    Layered double hydroxides (LDHs) have been considered as effective phases for the remediation of aquatic environments, to remove anionic contaminants mainly through anion exchange mechanisms. Here, a combination of batch isotherm experiments and X-ray techniques was used to examine molybdate (MoO ) sorption mechanisms on CaAl LDHs with increasing loadings of molybdate. Advanced modeling of aqueous data shows that the sorption isotherm can be interpreted by three retention mechanisms, including two types of edge sites complexes, interlayer anion exchange, and CaMoO precipitation. Meanwhile, Mo geometry evolves from tetrahedral to octahedral on the edge, and back to tetrahedral coordination at higher Mo loadings, indicated by Mo K-edge X-ray absorption spectra. Moreover, an anion exchange process on both CaAl LDHs was followed by in situ time-resolved synchrotron-based X-ray diffraction, remarkably agreeing with the sorption isotherm. This detailed molecular view shows that different uptake mechanisms - edge sorption, interfacial dissolution-reprecipitation - are at play and control anion uptake under environmentally relevant conditions, which is contrast to the classical view of anion exchange as the primary retention mechanism. This work puts all these mechanisms in perspective, offering a new insight into the complex interplay of anion uptake mechanisms by LDH phases, by using changes in Mo geometry as powerful molecular-scale probe.This work has been supported by a grant from Labex OSUG@2020 (Investissements d’avenir - ANR10 LABX56). B.M., A.F.-M., L.C., S.G. and F.C. thank the NEEDS program from the CNRS for funding support. B.M. also thanks the financial support from the China Scholarship Council (CSC)

    Pyroséquençage pour le développement d'EST et de SNP aviaires

    Get PDF
    Le but du programme est de combler les dĂ©ficits en marqueurs observĂ©s pour trois espĂšces aviaires : la caille, le canard et la poule. La stratĂ©gie choisie est l'obtention, Ă  partir de plusieurs individus de lignĂ©es d'intĂ©rĂȘt, de SNP (Single Nucleotide Polymorphism, polymorphisme d'un nuclĂ©otide) par une nouvelle technologie de sĂ©quençage Ă  haut dĂ©bit (sĂ©quenceur 454 GS-FLX, Roche). Nous sĂ©quençons des reprĂ©sentations rĂ©duites du gĂ©nome, en sĂ©lectionnant d'une part des fragments de restriction d'ADN gĂ©nomique - les mĂȘmes chez tous les individus - et d'autre part les transcrits qui reprĂ©sentent globalement la partie du gĂ©nome correspondant aux gĂšnes exprimĂ©s. Ces expĂ©rimentations sont rĂ©alisĂ©es Ă  partir d'Ă©chantillons d'ADN ou d'ARN issus d'individus de lignĂ©es Ă  l'origine de croisements existants, pour chacune des trois espĂšces. Les donnĂ©es gĂ©nĂ©rĂ©es par plusieurs "runs" de sĂ©quence seront traitĂ©es in silico : contigage Ă  haut dĂ©bit, recherche de SNP, comparaison avec les banques de sĂ©quences connues...En plus de l'intĂ©rĂȘt que reprĂ©sente la production d'un trĂšs grand nombre de SNP nouveaux, cette technologie devrait permettre de mieux sĂ©quencer les rĂ©gions riches en (G+C) correspondant aux plus petits des microchromosomes pour lesquels il n'y a pas de sĂ©quence chez la poule. La comparaison des sĂ©quences des transcrits obtenues chez la caille et le canard avec la sĂ©quence du gĂ©nome de la poule permettra d'Ă©tablir une "cartographie virtuelle" des SNP obtenus, grĂące Ă  la grande conservation de syntĂ©nie existant entre ces trois espĂšces

    Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death

    Get PDF
    A number of pathogens cause host cell death upon infection, and Yersinia pestis, infamous for its role in large pandemics such as the Black Death in medieval Europe, induces considerable cytotoxicity. The rapid killing of macrophages induced by Y. pestis, dependent upon type III secretion system effector Yersinia outer protein J (YopJ), is minimally affected by the absence of caspase-1, caspase-11, Fas ligand, and TNF. Caspase-8 is known to mediate apoptotic death in response to infection with several viruses and to regulate programmed necrosis (necroptosis), but its role in bacterially induced cell death is poorly understood. Here we provide genetic evidence for a receptor-interacting protein (RIP) kinase-caspase-8-dependent macrophage apoptotic death pathway after infection with Y. pestis, influenced by Toll-like receptor 4-TIR-domain-containing adapter-inducing interferon-ÎČ (TLR4-TRIF). Interestingly, macrophages lacking either RIP1, or caspase-8 and RIP3, also had reduced infection-induced production of IL-1ÎČ, IL-18, TNF, and IL-6; impaired activation of the transcription factor NF-ÎșB; and greatly compromised caspase-1 processing. Cleavage of the proform of caspase-1 is associated with triggering inflammasome activity, which leads to the maturation of IL-1ÎČ and IL-18, cytokines important to host responses against Y. pestis and many other infectious agents. Our results identify a RIP1-caspase-8/RIP3-dependent caspase-1 activation pathway after Y. pestis challenge. Mice defective in caspase-8 and RIP3 were also highly susceptible to infection and displayed reduced proinflammatory cytokines and myeloid cell death. We propose that caspase-8 and the RIP kinases are key regulators of macrophage cell death, NF-ÎșB and inflammasome activation, and host resistance after Y. pestis infection

    The origin of water in the primitive Moon as revealed by the lunar highlands samples

    Get PDF
    The recent discoveries of hydrogen (H) bearing species on the lunar surface and in samples derived from the lunar interior have necessitated a paradigm shift in our understanding of the water inventory of the Moon, which was previously considered to be a ‘bone-dry’ planetary body. Most sample-based studies have focused on assessing the water contents of the younger mare basalts and pyroclastic glasses, which are partial-melting products of the lunar mantle. In contrast, little attention has been paid to the inventory and source(s) of water in the lunar highlands rocks which are some of the oldest and most pristine materials available for laboratory investigations, and that have the potential to reveal the original history of water in the Earth–Moon system. Here, we report in-situ measurements of hydroxyl (OH) content and H isotopic composition of the mineral apatite from four lunar highlands samples (two norites, a troctolite, and a granite clast) collected during the Apollo missions. Apart from troctolite in which the measured OH contents in apatite are close to our analytical detection limit and its H isotopic composition appears to be severely compromised by secondary processes, we have measured up to ~2200 ppm OH in the granite clast with a weighted average ÎŽD of ~-105±130‰, and up to ~3400 ppm OH in the two norites (77215 and 78235) with weighted average ÎŽD values of -281±49‰ and -27±98‰, respectively. The apatites in the granite clast and the norites are characterised by higher OH contents than have been reported so far for highlands samples, and have H isotopic compositions similar to those of terrestrial materials and some carbonaceous chondrites, providing one of the strongest pieces of evidence yet for a common origin for water in the Earth–Moon system. In addition, the presence of water, of terrestrial affinity, in some samples of the earliest-formed lunar crust suggests that either primordial terrestrial water survived the aftermath of the putative impact-origin of the Moon or water was added to the Earth–Moon system by a common source immediately after the accretion of the Moon

    4. Building of a Habitable Planet

    Full text link
    • 

    corecore