1,920 research outputs found
Propagation of gravity waves through an SPH scheme with numerical diffusive terms
Basing on the work by Antuono et al. (2010) [1], an SPH model with numerical diffusive terms (here denoted ?-SPH) is combined with an enhanced treatment of solid boundaries to simulate 2D gravity waves generated by a wave maker and propagating into a basin. Both regular and transient wave systems are considered. In the former, a large number of simulations is performed for different wave steepness and height-to-depth ratio and the results are compared with a BEM Mixed-Eulerian-Lagrangian solver (here denoted BEM-MEL solver). In the latter, the ? -SPH model has been compared with both the experimental measurements available in the literature and with the BEM-MEL solver, at least until the breaking event occurs. The results show a satisfactory agreement between the ?-SPH model, the BEM-MEL solver and the experiments. Finally, the influence of the weakly-compressibility assumption on the SPH results is inspected and a convergence analysis is provided in order to identify the minimal spatial resolution needed to get an accurate representation of gravity waves
Approaching the event horizon: 1.3mm VLBI of SgrA*
Advances in VLBI instrumentation now allow wideband recording that
significantly increases the sensitivity of short wavelength VLBI observations.
Observations of the super-massive black hole candidate at the center of the
Milky Way, SgrA*, with short wavelength VLBI reduces the scattering effects of
the intervening interstellar medium, allowing observations with angular
resolution comparable to the apparent size of the event horizon of the putative
black hole. Observations in April 2007 at a wavelength of 1.3mm on a three
station VLBI array have now confirmed structure in SgrA* on scales of just a
few Schwarzschild radii. When modeled as a circular Gaussian, the fitted
diameter of SgrA* is 37 micro arcsec (+16,-10; 3-sigma), which is smaller than
the expected apparent size of the event horizon of the Galactic Center black
hole. These observations demonstrate that mm/sub-mm VLBI is poised to open a
new window onto the study of black hole physics via high angular resolution
observations of the Galactic Center.Comment: 6 pages, 4 figures, Proceedings for "The Universe under the
Microscope" (AHAR 2008), held in Bad Honnef (Germany) in April 2008, to be
published in Journal of Physics: Conference Series by Institute of Physics
Publishing, R. Schoedel, A. Eckart, S. Pfalzner, and E. Ros (eds.
Golden Ratio Prediction for Solar Neutrino Mixing
It has recently been speculated that the solar neutrino mixing angle is
connected to the golden ratio phi. Two such proposals have been made, cot
theta_{12} = phi and cos theta_{12} = phi/2. We compare these Ansatze and
discuss a model leading to cos theta_{12} = phi/2 based on the dihedral group
D_{10}. This symmetry is a natural candidate because the angle in the
expression cos theta_{12} = phi/2 is simply pi/5, or 36 degrees. This is the
exterior angle of a decagon and D_{10} is its rotational symmetry group. We
also estimate radiative corrections to the golden ratio predictions.Comment: 15 pages, 1 figure. Matches published versio
Bridging the knowledge gap on the distribution and typology of vermetid bioconstructions along the Maltese coastline: an updated assessment
In the Maltese Islands, insufficient attention has been paid to vermetid reefs, endemic Mediterranean bioconstructions widely distributed along the southern part of the basin. As a result, this is a largely-overlooked coastal ecosystem despite the multitude of ecosystem services it provides. The perennial urban development in the Maltese Islands calls for the adoption of urgent action to protect coastal habitats, in particular bioconstructions that increase biodiversity and contribute to mitigating the effects of climate change. The objective of our study was to extensively document the presence and typology of the vermetid reef ecosystems along the coast of Malta and Gozo, assessing the occurrence of putative anthropogenic threats on the same ecosystem. Quantitative measurements were additionally taken to morphologically characterize the recorded bioconstructions. Furthermore, we tested the human pressure effect on the density of vermetid individuals and associated biodiversity. “True” trottoirs were only documented along the south-east coast of Malta, where unfortunately land reclamation projects are expected to be implemented. Although no direct relation between a number of assessed human activities and the density of vermetid individuals was reported in the current study, we suggest the conduction of further studies to investigate the influence of specific disturbances on the conservation status of this ecosystem. This study expands the existing knowledge on the status of vermetid reefs in the Maltese Islands and calls for management and conservation actions to preserve this bioconstruction
Hints of theta_13>0 from global neutrino data analysis
Nailing down the unknown neutrino mixing angle theta_13 is one of the most
important goals in current lepton physics. In this context, we perform a global
analysis of neutrino oscillation data, focusing on theta_13, and including
recent results [Neutrino 2008, Proceedings of the XXIII International
Conference on Neutrino Physics and Astrophysics, Christchurch, New Zealand,
2008 (unpublished)]. We discuss two converging hints of theta_13>0, each at the
level of ~1sigma: an older one coming from atmospheric neutrino data, and a
newer one coming from the combination of solar and long-baseline reactor
neutrino data. Their combination provides the global estimate sin^2(theta_13) =
0.016 +- 0.010 (1sigma), implying a preference for \theta_13>0 with
non-negligible statistical significance (~90% C.L.). We discuss possible
refinements of the experimental data analyses, which might sharpen such
intriguing indication.Comment: Minor changes in the text. Matches published version in PR
Simultaneous Multi-Wavelength Observations of Sgr A* during 2007 April 1-11
We report the detection of variable emission from Sgr A* in almost all
wavelength bands (i.e. centimeter, millimeter, submillimeter, near-IR and
X-rays) during a multi-wavelength observing campaign. Three new moderate flares
are detected simultaneously in both near-IR and X-ray bands. The ratio of X-ray
to near-IR flux in the flares is consistent with inverse Compton scattering of
near-IR photons by submillimeter emitting relativistic particles which follow
scaling relations obtained from size measurements of Sgr A*. We also find that
the flare statistics in near-IR wavelengths is consistent with the probability
of flare emission being inversely proportional to the flux. At millimeter
wavelengths, the presence of flare emission at 43 GHz (7mm) using VLBA with
milli-arcsecond spatial resolution indicates the first direct evidence that
hourly time scale flares are localized within the inner 3070
Schwarzschild radii of Sgr A*. We also show several cross correlation plots
between near-IR, millimeter and submillimeter light curves that collectively
demonstrate the presence of time delays between the peaks of emission up to
three hours. The evidence for time delays at millimeter and submillimeter
wavelengths are consistent with the source of emission being optically thick
initially followed by a transition to an optically thin regime. In particular,
there is an intriguing correlation between the optically thin near-IR and X-ray
flare and optically thick radio flare at 43 GHz that occurred on 2007 April 4.
This would be the first evidence of a radio flare emission at 43 GHz delayed
with respect to the near-IR and X-ray flare emission.Comment: replaced with revised version 57 pages, 28 figures, ApJ (in press
Multi-Locus Phylogenetic Analyses of the Almadablennius Clade Reveals Inconsistencies with the Present Taxonomy of Blenniid Fishes
We used a multi-locus phylogenetic approach (i.e., combining both mitochondrial and nuclear DNA fragments) to address some long-standing taxonomic inconsistencies within the diverse fish clade of Combtooth Blennies (Blenniidae—unranked clade Almadablennius). The obtained phylogenetic trees revealed some major inconsistencies in the current taxonomy of Parablennini, such as the paraphyletic status of the Salaria and Parablennius genera, casting some doubt regarding their actual phylogenetic relationship. Furthermore, a scarce-to-absent genetic differentiation was observed among the three species belonging to the genus Chasmodes. This study provides an updated taxonomy and phylogeny of the former genus Salaria, ascribing some species to the new genus Salariopsis gen. nov., and emphasizes the need for a revision of the genus Parablennius
Radio and Millimeter Monitoring of Sgr A*: Spectrum, Variability, and Constraints on the G2 Encounter
We report new observations with the Very Large Array, Atacama Large
Millimeter Array, and Submillimeter Array at frequencies from 1.0 to 355 GHz of
the Galactic Center black hole, Sagittarius A*. These observations were
conducted between October 2012 and November 2014. While we see variability over
the whole spectrum with an amplitude as large as a factor of 2 at millimeter
wavelengths, we find no evidence for a change in the mean flux density or
spectrum of Sgr A* that can be attributed to interaction with the G2 source.
The absence of a bow shock at low frequencies is consistent with a
cross-sectional area for G2 that is less than cm. This
result fits with several model predictions including a magnetically arrested
cloud, a pressure-confined stellar wind, and a stellar photosphere of a binary
merger. There is no evidence for enhanced accretion onto the black hole driving
greater jet and/or accretion flow emission. Finally, we measure the millimeter
wavelength spectral index of Sgr A* to be flat; combined with previous
measurements, this suggests that there is no spectral break between 230 and 690
GHz. The emission region is thus likely in a transition between optically thick
and thin at these frequencies and requires a mix of lepton distributions with
varying temperatures consistent with stratification.Comment: Accepted for publication in Ap
Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data
In the context of three-flavor neutrino mixing, we present a thorough study
of the phenomenological constraints applicable to three observables sensitive
to absolute neutrino masses: The effective neutrino mass in Tritium beta decay
(m_beta); the effective Majorana neutrino mass in neutrinoless double beta
decay (m_2beta); and the sum of neutrino masses in cosmology (Sigma). We
discuss the correlations among these variables which arise from the combination
of all the available neutrino oscillation data, in both normal and inverse
neutrino mass hierarchy. We set upper limits on m_beta by combining updated
results from the Mainz and Troitsk experiments. We also consider the latest
results on m_2beta from the Heidelberg-Moscow experiment, both with and without
the lower bound claimed by such experiment. We derive upper limits on Sigma
from an updated combination of data from the Wilkinson Microwave Anisotropy
Probe (WMAP) satellite and the 2 degrees Fields (2dF) Galaxy Redshifts Survey,
with and without Lyman-alpha forest data from the Sloan Digital Sky Survey
(SDSS), in models with a non-zero running of the spectral index of primordial
inflationary perturbations. The results are discussed in terms of
two-dimensional projections of the globally allowed region in the
(m_beta,m_2beta,Sigma) parameter space, which neatly show the relative impact
of each data set. In particular, the (in)compatibility between Sigma and
m_2beta constraints is highlighted for various combinations of data. We also
briefly discuss how future neutrino data (both oscillatory and non-oscillatory)
can further probe the currently allowed regions.Comment: 17 pages (RevTeX) + 7 figures (PostScript). Minor changes in text;
references added; results unchanged. To appear in PR
- …