691 research outputs found

    Ultra-steep side facets in multi-faceted SiGe/Si(001) Stranski-Krastanow islands

    Get PDF
    For the prototypical Ge/Si(001) system, we show that at high growth temperature a new type of Stranski-Krastanow islands is formed with side facets steeper than {111} and high aspect ratio. Nano-goniometric analysis of the island shapes reveals the presence of six new facet groups in addition to those previously found for dome or barn-shaped islands. Due to the highly multi-faceted island shape and high aspect ratio, the new island types are named "cupola" islands and their steepest {12 5 3} side facet is inclined by 68°to the substrate surface. Assessing the relative stability of the new facets from surface area analysis, we find that their stability is similar to that of {113} and {15 3 23} facets of dome islands. The comparison of the different island shapes shows that they form a hierarchical class of geometrical structures, in which the lower aspect ratio islands of barns, domes and pyramids are directly derived from the cupola islands by successive truncation of the pedestal bases without facet rearrangements. The results underline the key role of surface faceting in the process of island formation, which is as crucial for understanding the island's growth evolution as it is important for device applications

    Electro-Magnetic Earthquake Bursts and Critical Rupture of Peroxy Bond Networks in Rocks

    Full text link
    We propose a mechanism for the low frequency electromagnetic emissions and other electromagnetic phenomena which have been associated with earthquakes. The mechanism combines the critical earthquake concept and the concept of crust acting as a charging electric battery under increasing stress. The electric charges are released by activation of dormant charge carriers in the oxygen anion sublattice, called peroxy bonds or positive hole pairs (PHP), where a PHP represents an O3X/OO\YO3O_3X/^{OO}\backslash YO_3 with X,Y=Si4+,Al3+...X,Y = Si^{4+}, Al^{3+}..., i.e. an OO^- in a matrix of O2O^{2-} of silicates. We propose that PHP are activated by plastic deformations during the slow cooperative build-up of stress and the increasingly correlated damage culminating in a large ``critical'' earthquake. Recent laboratory experiments indeed show that stressed rocks form electric batteries which can release their charge when a conducting path closes the equivalent electric circuit. We conjecture that the intermittent and erratic occurrences of EM signals are a consequence of the progressive build-up of the battery charges in the Earth crust and their erratic release when crack networks are percolating throughout the stressed rock volumes, providing a conductive pathway for the battery currents to discharge. EM signals are thus expected close to the rupture, either slightly before or after, that is, when percolation is most favored.Comment: 17 pages with 3 figures, extended discussion with 1 added figure and 162 references. The new version provides both a synthesis of two theories and a review of the fiel

    Effect of farnesol on planktonic and biofilm cells of Staphylococcus epidermidis

    Get PDF
    Staphylococcus epidermidis is now amongst the most important pathogenic agents responsible for bloodstream nosocomial infections and for biofilm formation on indwelling medical devices. Its increasing resistance to common antibiotics is a challenge for the development of new antimicrobial agents. Accordingly, the goal of this study was to evaluate the effect of farnesol, a natural sesquiterpenoid, on Staphylococcus epidermidis planktonic and biofilm cells. Farnesol displayed a significant inhibitory effect on planktonic cells. Small concentrations (100 μM) were sufficient to exhibit antibacterial effect on these cells. In biofilm cells the effect of farnesol was not so pronounced and it seems to be strongly dependent on the cells metabolic activity and amount of matrix. Interestingly, the effect of farnesol at 200 μM was similar to the effect of vancomycin at peak serum concentration either in planktonic or biofilm cells. Overall, the results indicate a potential antibacterial effect of farnesol against S. epidermidis, and therefore the possible action of this molecule on the prevention of S. epidermidis related infections.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/32126/2006, SFRH/BPD/26803/200

    Connectivity between mPFC and PCC predicts post‐choice attitude change: The self‐referential processing hypothesis of choice justification

    Full text link
    Prior research shows that after making a choice, decision makers shift their attitudes in a choice‐congruous direction. Although this post‐choice attitude change effect is robust, the neural mechanisms underlying it are poorly understood. Here, we tested the hypothesis that decision makers elaborate on their choice in reference to self‐knowledge to justify the choice they have made. This self‐referential processing of the choice is thought to play a pivotal role in the post‐choice attitude change. Twenty‐four young American adults made a series of choices. They also rated their attitudes toward the choice options before and after the choices. In support of the current hypothesis, we found that changes in functional connectivity between two putative self‐regions (medial prefrontal cortex and posterior cingulate cortex/precuneus]) during the post‐choice (vs. pre‐choice) rating of the chosen options predicted the post‐choice shift of the attitudes toward the chosen options. This finding is the first to suggest that cognitive integration of various self‐relevant cognitions is instrumental in fostering post‐choice attitude change. Hum Brain Mapp 37:3810–3820, 2016. © 2016 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134093/1/hbm23277_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134093/2/hbm23277.pd

    Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy.

    Get PDF
    Establishment of an in vivo small animal model of human tumor and human immune system interaction would enable preclinical investigations into the mechanisms underlying cancer immunotherapy. To this end, nonobese diabetic (NOD).Cg- PrkdcscidIL2rgtm1Wjl/Sz (null; NSG) mice were transplanted with human (h)CD34+ hematopoietic progenitor and stem cells, which leads to the development of human hematopoietic and immune systems [humanized NSG (HuNSG)]. HuNSG mice received human leukocyte antigen partially matched tumor implants from patient-derived xenografts [PDX; non-small cell lung cancer (NSCLC), sarcoma, bladder cancer, and triple-negative breast cancer (TNBC)] or from a TNBC cell line-derived xenograft (CDX). Tumor growth curves were similar in HuNSG compared with nonhuman immune-engrafted NSG mice. Treatment with pembrolizumab, which targets programmed cell death protein 1, produced significant growth inhibition in both CDX and PDX tumors in HuNSG but not in NSG mice. Finally, inhibition of tumor growth was dependent on hCD8+ T cells, as demonstrated by antibody-mediated depletion. Thus, tumor-bearing HuNSG mice may represent an important, new model for preclinical immunotherapy research. FASEB J 2018 Mar; 32(3):1537-1549

    Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system

    Get PDF
    This study investigated the performance of the portable Cortex Metamax 3B (MM3B) automated gas analysis system during both simulated and human exercise using adolescents. Repeated measures using a Gas Exchange System Validator (GESV) across a range of simulated metabolic rates, showed the MM3B to be adequately reliable (both percentage errors, and percentage technical error of measurements <2%) for measuring expired ventilation (VE), oxygen consumption (VO2), and carbon dioxide production (VCO2). Over a 3 h period, the MM3B was shown to be acceptably stable in measuring gas fractions, as well as VE, VO2, and VCO2 generated by the GESV, especially at moderate and high metabolic rates (drifts <2% and of minor physiological significance). Using eight healthy adolescents during rest, moderate, and vigorous cycle ergometry, the validity of the MM3B was tested against the primary criterion Douglas bag method (DBM) and a secondary criterion machine known to be accurate, the Jaeger Oxycon Pro system. No significant errors in VE were noted, yet the MM3B significantly overestimated both VO2 and VCO2 by approximately 10–17% at moderate and vigorous exercise as compared to the DBM and at all exercise levels compared to the Oxycon Pro. No significant differences were seen in any metabolic variable between the two criterion systems (DBM and Oxycon Pro). It is concluded the MM3B produces acceptably stable and reliable results, but is not adequately valid during moderate and vigorous exercise without some further correction of VO2 and VCO2

    Modulation of Ca2+ Signals by Epigallocatechin-3-gallate(EGCG) in Cultured Rat Hippocampal Neurons

    Get PDF
    Green tea has been receiving considerable attention as a possible neuroprotective agent against neurodegenerative disease. Epigallocatechin-3-gallate (EGCG) is the major compound of green tea. Calcium signaling has profound effects on almost all aspects of neuronal function. Using digital calcium imaging and patch-clamp technique, we determined the effects of EGCG on Ca2+ signals in hippocampal neurons. The results indicated that EGCG caused a dose-dependent increase in intracellular Ca2+ ([Ca2+]i). This [Ca2+]i increase was blocked by depleting intracellular Ca2+ stores with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin and cyclopiazonic acid. Furthermore, EGCG-stimulated increase in [Ca2+]i was abolished following treatment with a PLC inhibitor. However, EGCG inhibited high-voltage activated Ca2+ currents (IHVA) and NMDA-induced inward currents (INMDA). These data suggest that EGCG triggers a cascade of events: it activates phospholipase C (PLC), mobilizes intracellular Ca2+ stores, raises the cytosolic Ca2+ levels, and inhibits the VGCC and NMDA receptors-mediated Ca2+ influx through a process that remains to be determined

    Identification of a humanized mouse model for functional testing of immune-mediated biomaterial foreign body response.

    Get PDF
    Biomedical devices comprise a major component of modern medicine, however immune-mediated fibrosis and rejection can limit their function over time. Here, we describe a humanized mouse model that recapitulates fibrosis following biomaterial implantation. Cellular and cytokine responses to multiple biomaterials were evaluated across different implant sites. Human innate immune macrophages were verified as essential to biomaterial rejection in this model and were capable of cross-talk with mouse fibroblasts for collagen matrix deposition. Cytokine and cytokine receptor array analysis confirmed core signaling in the fibrotic cascade. Foreign body giant cell formation, often unobserved in mice, was also prominent. Last, high-resolution microscopy coupled with multiplexed antibody capture digital profiling analysis supplied spatial resolution of rejection responses. This model enables the study of human immune cell-mediated fibrosis and interactions with implanted biomaterials and devices
    corecore