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Humanized mice in studying efficacy and mechanisms
of PD-1-targeted cancer immunotherapy
Minan Wang,*,1 Li-Chin Yao,* Mingshan Cheng,* Danying Cai,* Jan Martinek,† Chong-Xian Pan,‡ Wei Shi,‡

Ai-Hong Ma,§ Ralph W. De Vere White,‡ Susan Airhart,† Edison T. Liu,† Jacques Banchereau,†

Michael A. Brehm,{,k Dale L. Greiner,{,k Leonard D. Shultz,# Karolina Palucka,† and James G. Keck*
*Department of In Vivo Pharmacology Services, The Jackson Laboratory, Sacramento, California, USA; †Department of Immunology, The
Jackson Laboratory, Farmington, Connecticut, USA; ‡Department of Urology and §Department of Biochemistry and Molecular Medicine, Davis
Comprehensive Cancer Center, University of California, Davis, Davis, California, USA; {Department of Molecular Medicine and the kDiabetes
Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and #Department of Immunology, The
Jackson Laboratory, Bar Harbor, Maine, USA

ABSTRACT: Establishment of an in vivo small animal model of human tumor and human immune system interaction
would enable preclinical investigations into themechanismsunderlying cancer immunotherapy. To this end, nonobese
diabetic (NOD).Cg-PrkdcscidIL2rgtm1Wjl/Sz (null; NSG) mice were transplanted with human (h)CD34+ hematopoietic
progenitor and stem cells, which leads to the development of human hematopoietic and immune systems [humanized
NSG (HuNSG)]. HuNSG mice received human leukocyte antigen partially matched tumor implants from patient-
derivedxenografts [PDX;non–small cell lungcancer (NSCLC), sarcoma,bladdercancer,andtriple-negativebreast cancer
(TNBC)] or from a TNBC cell line-derived xenograft (CDX). Tumor growth curves were similar in HuNSG compared
with nonhuman immune-engraftedNSGmice. Treatmentwith pembrolizumab, which targets programmed cell death
protein1,producedsignificantgrowth inhibition inbothCDXandPDXtumors inHuNSGbutnot inNSGmice.Finally,
inhibition of tumor growth was dependent on hCD8+ T cells, as demonstrated by antibody-mediated depletion. Thus,
tumor-bearingHuNSGmicemay represent an important, newmodel for preclinical immunotherapy research.—Wang,
M., Yao, L.-C., Cheng,M.,Cai,D.,Martinek, J., Pan,C.-X., Shi,W.,Ma,A.-H.,DeVereWhite,R.W.,Airhart, S., Liu, E. T.,
Banchereau, J., Brehm,M.A., Greiner, D. L., Shultz, L. D., Palucka, K., Keck, J. G.Humanizedmice in studying efficacy
and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J. 32, 1537–1549 (2018). www.fasebj.org

KEY WORDS: checkpoint inhibitor • mouse model • patient-derived xenograft • pembrolizumab

Translation of the discoveries from mouse models to clin-
ical trials has been hindered by many genetic and biologic
differences between humans and mice (1, 2). To overcome

these constraints, humanizedmice engraftedwithahuman
immune systemhave been developed as an important tool
for cancer research (3, 4). In conditioned nonobese diabetic
(NOD).Cg-PrkdcscidIL2rgtm1Wjl/Sz (NSG) recipients, hema-
topoietic progenitor and stem cell (HPSC) engraftment
leads to the generation of multiple lineages of hemato-
poietic and immune cells, including T cells, B cells,
myeloid cells, and conventional, as well as plasmacy-
toid dendritic cells (5–7). Antigen-specific cytotoxic
and IFN-g-producing T-cell responses are detectable
in humanized NSG (HuNSG) mice (3, 8, 9). Thus,
HuNSG mice can develop partially functional human
immune systems when engrafted with human HPSCs,
suggesting that these HuNSG mice can be used as an
important tool for immunotherapy in cancer research.

Immunotherapy has emerged as a promising cancer
treatment via activation of the immune system and
reduction of immune suppression within the tumor mi-
croenvironment [reviewed in refs. (10–12)]. Among the
most efficient approaches for activation of anti-tumor
immunity is the blockade of immune checkpoints. Under
physiologic conditions, immune checkpoints are critical

ABBREVIATIONS: CDX, cell line-derived xenograft; HLA, human leukocyte
antigen; HPSC, hematopoietic progenitor and stem cell; HuNSG, humanized
nonobese diabetic (NOD).Cg-PrkdcscidIL2rgtm1Wjl/Sz; MHC, major histocom-
patibility complex; NOD, nonobese diabetic; NSCLC, non–small cell lung
cancer; NSG, nonobese diabetic (NOD).Cg-PrkdcscidIL2rgtm1Wjl/Sz; PD-1,
programmed cell death protein 1; PD-L1/2, programmed cell death protein
1/2 ligand; PDX, patient-derived xenograft; PE, phycoerythrin; SBT,
sequence-based typing; scid, severe combined immunodeficiency; TIL,
tumor-infiltrating lymphocyte; TNBC, triple-negative breast cancer;
Treg, regulatory T
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USA. E-mail: minan.wang@jax.org

This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial 4.0 International (CC
BY-NC 4.0) (http://creativecommons.org/licenses/by-nc/4.0/) which
permits noncommercial use, distribution, and reproduction in any me-
dium, provided the original work is properly cited.

doi: 10.1096/fj.201700740R
This article includes supplemental data. Please visit http://www.fasebj.org to
obtain this information.

0892-6638/18/0032-1537 © The Author(s) 1537

Downloaded from www.fasebj.org by Jackson Laboratory Library (64.147.48.85) on March 26, 2018. The FASEB Journal Vol. 32, No. 3, pp. 1537-1549.

http://www.fasebj.org
http://www.fasebj.org
mailto:minan.wang@jax.org
http://creativecommons.org/licenses/by-nc/4.0/
http://www.fasebj.org


for maintaining self-tolerance and protecting peripheral
tissues fromcollateraldamage in response to infection (13).
Tumors also use immune checkpoints to suppress anti-
tumor immune responses. Blockade of checkpoint pro-
teins, such as programmed cell death protein 1 (PD-1), has
presented broad and diverse opportunities to enhance
antitumor immunitywith thepotential toproducedurable
clinical responses [reviewed in refs. (14, 15)].

PD-1 is broadly expressed on activated CD4+, CD8+

T cells and CD4+ regulatory T (Treg) cells, as well as on
B cells and NK cells (16, 17). PD-1 is also constitutively
expressed on tumor-infiltrating lymphocytes (TILs) in a
variety of tumor types (18), reflecting an exhausted T-cell
status. PD-1 binds to 2 ligands: PD-1 ligand 1 (PD-L1; also
known as B7-H1) and PD-L2 (B7-DC) (19–21). PD-L1 is
broadly expressed on normal healthy tissues and malig-
nant cells, whereas PD-L2 is expressed predominately by
antigen-presenting cells (22). PD-L1 binding to PD-1 leads
to inhibition of T-cell activation and effector function me-
diated by recruitment of tyrosine phosphatases to the
immune synapse that disrupts T-cell receptor signaling
(23). A large body of evidence has shown that PD-L1 ex-
pression is commonly upregulated in many different hu-
man cancer types, includingmelanoma, lung, and ovarian
tumors (reviewed in refs. 14, 24).

Early-phase clinical trials investigating blockade of the
PD-1/PD-L1 signaling pathway have shown positive
clinical responses in some patients bearing melanoma,
non–small cell lung cancer (NSCLC) and renal cell carci-
noma tumors (25–27). Pembrolizumab, a highly selective
humanized IgG4-kmAb, has been the first U.S. Food and
Drug Administration-approved anti-PD-1 therapy. The
levels of PD-L1 expression in patient tumor samples cor-
relatewithhigher response rates anda longerprogression-
free survival time (25, 28, 29). Thus, the expression levels of
PD-L1 can identify those patients who are most likely to
benefit from pembrolizumab. However, durable clinical
responses have also been observed in patients considered
tobenegative for tumorPD-L1 expression (30), suggesting
that additional mechanisms underlying PD-1/PD-L1
blockade therapy may be involved in mediating its ther-
apeutic effects. Thus, it would be advantageous to estab-
lish an in vivomodel system thatwould allowmechanistic
studies regarding the mode of action of anti-PD-1 thera-
peutic agents.

Herein,wesuccessfully establishedahumanizedmouse
model bearing human cancer cell line-derived xenograft
(CDX) or patient-derived xenograft (PDX) tumors, the
Onco-HuNSGmodel, usingallogeneic buthuman leukocyte
antigen (HLA) partially matched CD34+ HPSC donors and
tumors. Onco-HuNSG mice might be useful in preclinical
investigation of the efficacy of cancer immunotherapy.

MATERIALS AND METHODS

Mice

NSG mice were developed at The Jackson Laboratory (Sacra-
mento, CA, USA) by backcrossing a complete null mutation
at the Il2rg locus onto the NOD.Cg-Prkdcscid (NOD/SCID) strain

(5, 31). HuNSG mice were generated as previously reported
(31). In brief, human fetal liver CD34+-purified HPSCs were
purchased from Stem Express (Folsm, CA, USA). HuNSG mice
were generated by intravenous injection of 105 human CD34+

(hCD34+) HPSCs into 3-wk-old female NSGmice, 4 h post-140
cGy total body irradiation using the RS-2000 irradiator (Rad
Source, Buford, GA, USA). The engraftment levels of hCD45+

cells were determined 12 wk post-HPSC transplantation by
flow cytometric quantification of peripheral blood hCD45+

cells. HuNSG mice that had over 25% hCD45+ cells in the pe-
ripheral blood were considered as engrafted and humanized.
HuNSGmice from different HPSC donors with different levels
of engraftmentwere randomized into every treatment group in
all of the experiments. Mice were maintained under defined
florawith irradiated food at The Jackson Laboratory, according
to guidelines established by the Institutional Animal Care and
Use Committee.

CDX and PDX tumor explants

The MDA-MB-231 human triple-negative breast cancer (TNBC)
cell line (ATCCHTB-26)waspurchased from theAmericanType
Culture Collection (Manassas, VA, USA). Cells were cultured in
Leibovitz’s L-15 medium (Thermo Fisher Scientific, Waltham,
MA,USA), supplementedwith 10%heat-inactivated fetal bovine
serum (GE Healthcare Life Sciences, HyClone Laboratories,
Logan,UT,USA) and1%penicillin-streptomycin (ThermoFisher
Scientific) at 37°C with 0% CO2. The MDA-MB-231 cell line was
tested negative for gram-positive, gram-negative bacteria, and
mycoplasma by PCR. Cell authentication was performed by
Short Tandem Repeat Polymorphism DNA sequencing (Soft-
Genetics, State College, PA, USA). P5 MDA-MB-231 cells were
used for tumor implantation. Patient tumor explants were
obtained from surgical specimens of lung, breast, bladder, and
sarcoma cancer from patients at the Davis Comprehensive
CancerCenter,University ofCalifornia,Davis (Davis,CA,USA).
Written, informed consentwas obtained from the patients before
collection of specimens. PDX models were generated by im-
plantation of PDX into NSG and HuNSG mice. In brief, patient-
derived tumorswere finelyminced and loaded into 1-cc syringes
with 14-gauge needles. Depending on the tumormodel, 20–40ml
of homogenized tumor tissue was inoculated subcutaneously at
the right flank of NSG mice while under anesthesia. The PDX
tumors that were used in this study include NSCLC: LG0997,
LG0978, LG1306, and LG1208; TNBC: BR1126 and BR0744; sar-
coma: SA0209; and bladder: BL0293.

Tumor experiments

At least 12 wk post-human HPSC transplantation, 53 106 TNBC
MDA-MB-231 cells, suspended in serum-freemediummixedwith
matrigel (Corning Life Sciences, Bedford, MA, USA), were in-
jected intomammary fat pads inHuNSGmice. For PDXmodels,
20–40ml of finelyminced tumorswas injected subcutaneously into
the right flank of HuNSG mice. Treatment was started when the
tumors reached 50–120 mm3 in volume. Vehicle control saline
(Hospira, Austin, TX, USA) was injected intraperitoneally or in-
travenously every 5 d until the study end point. Pembrolizumab
(anti-PD-1;Merck,Whitehouse Station, NJ, USA)was injected
intraperitoneally or intravenously at 10mg/kg for the first dose,
followed by 5 mg/kg (i.p. or i.v.) dose every 5 d until the study
end point. Bladder PDX tumor (BL0293) was injected with
10 mg/kg, i.p. pembrolizumab i.p., followed by 5 mg/kg, i.p.
pembrolizumab, twice a week until the end of the study. Cis-
platin (Teva Pharmachemie, Haarlem, The Netherlands) was
injected intravenously at 2 mg/kg on d 0, 7, and 14. To deplete
hCD8+ T cells in HuNSGmice, 200 mg anti-CD8 depletionmAb
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(clone RPA-T8; BioLegend, San Diego, CA, USA) was injected
intraperitoneally into HuNSG mice, 1 d before pembrolizumab
treatment and then followed by weekly intraperitoneal injec-
tions of anti-CD8 mAb for 4 wk. IgG1, k isotype control mAb
(cloneMOPC-21) fromBioLegendwas injected intraperitoneally
into control HuNSG mice on the same days as anti-CD8 de-
pletion antibody. Tumorsweremeasuredby caliper every 3–4d,
and volumes (mm3) were calculated by (length3width)2/2.

Immunofluorescence microscopy

Tumors samples were frozen in optimum cutting temperature
(SakuraFinetek, Torrance,CA,USA).Acetone-fixed cryosections
(8mm)were consecutively treatedwith 0.01%TritonX-100 for 15
min, 0.03% hyaluronidase for 15 min, FcR Block (Innovex Bio-
sciences, Richmond, CA, USA) for 40 min, and Background
Buster (Innovex Biosciences) for 20 min. The sections were then
stained with primary antibodies diluted in PBS + 5% bovine se-
rum albumin and 0.1% saponin for 1 h at room temperature,
washed, and stained with the secondary antibodies at room
temperature for 30 min. Nuclei were counterstained with DAPI
(1 mg/ml) for 2 min. Primary antibodies included anti-hCD45 at
2 mg/ml (clone H130; BioLegend), FITC-conjugated anti-pan
cytokeratin at 1:60 dilution (clone CK3-6H5; Miltenyi Biotec,
Bergisch Gladbach, Germany), and AF647-conjugated anti-
hCD8a at 1.25 mg/ml (clone RPA-T8; BioLegend). The second-
ary antibody included goat anti-mouse IgG1 AF568 at 1:2000
dilution (Thermo Fisher Scientific). For acquisition, data were
acquired by sequential acquisition, and tile-scan imaging was
performed on an SP8 confocal microscope (Leica Microsystems,
Wetzlar, Germany).

Antibodies and flow cytometry

Whole blood, spleen, and tumor tissues were processed for flow
cytometry analysis. In brief, gentleMACS Octo Dissociator from
Miltenyi Biotec was used for spleen and tumor-tissue dissocia-
tion, followed by filtering through 100 mm screens. After tissue
dissociation, the cells werewashedwith PBS and incubatedwith
the antibody panel for 15–20 min at room temperature. The red
blood cells were lysed by Pharm Lyse (BD Biosciences, San Jose,
CA, USA) for 8–12 min following antibody staining at room
temperature. Live or dead cells were detected by LIVE/DEAD
Fixable Red Dead Cell Stain Kit (Thermo Fisher Scientific).
Samples were centrifuged and washed with PBS before suspen-
sion in PBS for data acquisition on BD FACSCanto II using
FACSDiva software (BD Biosciences).

Fluorochrome–conjugated mAb to the following human an-
tigens were used: CD45-V510 (cloneHI30), CD45-phycoerythrin
(PE; clone HI30), CD3-FITC (clone UCHT1), CD4-PE-cyanine 7
(clone SK3), CD8-allophycocyanin-cyanine 7 (clone SK1), CD19-
allophycocyanin (clone HIB19), PD-1-PE (clone EH12.2H7), and
PD-L1-V421 (clone 29E.2A3). All antibodies were purchased
from BioLegend.

HLA genotyping of the McMaster Cohort

High-resolution HLA typing was performed by sequence-based
typing (SBT) at the University of Oklahoma Health Sci-
ences Center Clinical Laboratory Improvement Amendments/
American Society for Histocompatibility & Immunogenetics-
accredited HLA Typing Laboratory (Oklahoma City, OK, USA)
using in-house methods. In brief, genomic DNA was extracted
from HPSCs using a QIAamp DNA blood kit (Qiagen, Hilden,
Germany), and a DNEasy Blood & Tissue Kit (Qiagen) was
used to extract genomic DNA from tumor samples. After

confirmation, the PCRproductwas purified using an ExoSAP-IT
kit (USB) and was sequenced using BigDye Terminator v.3.1
(Thermo Fisher Scientific). Dye removal was conducted by etha-
nol precipitation. Sequencing reactionswere performed on a 3730
capillary electrophoresis DNA sequencer (Thermo Fisher Scien-
tific). Four-digit HLA types were determined using the HLA
typing program Assign SBT (Olerup, West Chester, PA, USA).

Histocytometry

In situ quantitative analysis of breast cancer tissue was based on
previously published methodology (32). In brief, a cryosection
was stained by immunofluorescence for each breast cancer tissue
to label nuclei andCD8.Whole-tissue scans were acquired using
an SP8 confocal microscope (Leica Microsystems). Each scan
was then analyzed by using the image analysis software Imaris
(Bitplane, Zurich, Switzerland).With the use of the “spot” function
in Imaris, the imageswere subdivided into individual cells, defined
as having a nucleus diameter $6 mm. The accuracy of the seg-
mentation was manually verified and adjusted if needed for each
sample. Finally, for each generated spot, its x and y coordinates
and the sum intensity values for all channels were exported into
an fcs file to be visualized and quantified using FlowJo software
(v.10; FlowJo, Ashland, OR, USA).

Statistical analysis

Statistical analyses were performed with GraphPad Prism 5
software, except a tumor growth curve comparison with 2
groups.Means6 SEMare shown in all graphs.Thenonparametric
Mann-Whitney U test was applied to compare the results of cell
numbers fromdifferent treatment groups. Tumor growth curves
were analyzed by 2-way ANOVA, followed by Dunnett’s post-
tests for experiment with 3 groups. For experiments with only 2
groups, tumor growth curves were analyzed by a Multivariate
ANOVAtest, followedby aunivariate testwith JMP11 software.
Differences of P, 0.05, P, 0.01, P, 0.001, and P, 0.0001 are
considered statistically significant.

RESULTS

Onco-HuNSG mice support growth of partially
HLA-matched human CDX and PDX tumors

The generation of Onco-HuNSG mice bearing CDX or
PDX tumors is illustrated in Fig. 1A. We implanted the
same PDX model in both Onco-HuNSG and NSG mice
(Fig. 1B–D). HLA genotyping was performed for all PDX
tumors, as well as humanHPSC donors used in the Onco-
HuNSG mice (Table 1). All 3 PDX models have partial
HLAmatcheswith their correspondingHPSCdonors. The
TNBC (BR0744) PDX tumormodel grew slightly slower in
Onco-HuNSG compared with NSG mice (Fig. 1B). This
might be a result of multiple HLA class I and II loci
matches between the TNBC (BR0744) PDX tumor and the
CD34+ HPSC donor (Table 1), leading to stronger alloge-
neic immune responses against the tumor. The other 2
PDX models: NSCLC (LG0997P4; Fig. 1C) and sarcoma
(SA0209P4; Fig. 1D) showed similar tumor growth rates
between Onco-HuNSG and NSG mice. Our results
showed that human PDX tumors can grow in Onco-
HuNSG mice with partially HLA-matched allogeneic
human immune systems.
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Next, we used hCD45, a marker of human leukocytes,
and flow cytometry to determine the degree of immune
cell infiltration into thePDXtumors inOnco-HuNSGmice.

As shown In Fig. 1E, all 3 PDX tumors engrafted in Onco-
HuNSG mice displayed hCD45+ immune cell infiltrates,
whereas no hCD45+ cells were detected in tumor-bearing

Figure 1. HuNSG mice support growth of partially HLA-matched human CDX and PDX tumors and immune cell populations in Onco-
HuNSG mice. A) Experimental design for generating HuNSG mice bearing CDX or PDX tumors. B–D) Implantation of HLA partially
matched PDX tumors BR0744P3 (B), LG0997P4 (C), and SA0209P4 (D) into NSG or HuNSG mice. PDX tumors were excised and
implanted subcutaneously into NSG or HuNSGmice. Tumormeasurements were calculated as (L3W3W)/2, where L is the length, and
W is the width of the tumor. No statistical differences were observed in any tumor model between NSG and HuNSG mice. E) Flow
cytometric analysis of hCD45+ cells in tumors from NSG or HuNSG mice. No hCD45+ cells were detected in tumors growing in NSG mice.
F, G) At the study end point, hCD3, hCD4, hCD8, and hCD19 were stained for flow cytometric analysis to determine the populations of
lymphocytes in tumor tissues (F) and peripheral blood (G) of 3 different PDX models. CD3+, CD4+, CD19+ cells are presented as
percentage of cells within CD45+ cells.H) hCD45, hCD3, hCD4, and hCD8 were stained for flow cytometric analysis to determine numbers
of TILs in MDA-MB-231 tumor-bearing HuNSG mice. Correlation was calculated by GraphPad Prism 5. **P , 0.01, ***P , 0.001.
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NSG mice. This indicates that the human immune cells
infiltrating the PDX tumors were derived from CD34+

donor HPSCs rather than from the surviving human im-
mune cells of the original PDX tumors.

T-cell infiltrationwasdetectedusingCD3+staining inall
3 PDX tumors,whereasCD19+B cellswere only detectable
in the TNBC (BR0744) tumor (Fig. 1F). The ratio of CD4+

and CD8+ T cells varied in different PDX tumors. The
TNBC (BR0744) tumor showed significantly higher CD4+

T-cell infiltration (40.16 7.4%) thanCD8+T-cell infiltration
(15.263.9%;P,0.01). In contrast,CD8+T-cell levels (57.56
9.6%)were significantly higher than CD4+ T cells (24.66
2.9%; P , 0.01) in the sarcoma (SA0209P4; Fig. 1F). The
different CD4/CD8 T-cell ratios in different Onco-HuNSG
tumor models reflect the heterogeneity of TIL density in
patients with cancer [reviewed in Fridman et al. (33)]. Of
note, these 3 PDX tumors in Onco-HuNSG mice had sim-
ilar hCD45+ cells in blood circulation before tumor im-
plantation.We also detected hCD33+myeloid cells in both
tumors (Supplemental Fig. S1A) and spleens (Supple-
mental Fig. S1B) of sarcoma (SA0209P4) and NSCLC
(LG0997P4) Onco-HuNSG models. Analysis of the blood
cells revealed that the sarcoma (SA0209P4) and theNSCLC
(LG0997P4) Onco-HuNSG mice displayed more circulat-
ingCD4+ T cells thanCD8+ T cells. Circulating B cellswere

also detected (Fig. 1G). Thus, the lymphocyte populations
in both peripheral blood and tumor of Onco-HuNSGmice
mayvary,dependingon the tumormodel. In theTNBCcell
line MDA-MB-231 CDX Onco-HuNSG model, the tumor
volume was negatively correlated with the numbers of
hCD45+, hCD4+, and hCD8+ T cells that infiltrated the tu-
mor (Fig. 1H; P , 0.01 or P , 0.001), suggesting that the
human T cells might be impeding tumor growth.

Onco-HuNSG mice responded to anti-PD-1
immunotherapy

Next, we determined whether anti-PD-1 pembrolizumab
wouldshowefficacy inOnco-HuNSGmice.Theexperimental
protocol is outlined in Fig. 2A. We selected 1 TNBC CDX
tumor model MDA-MB-231, 1 TNBC PDX tumor model
BR1126, and 1NSCLC tumormodel LG1306 based on a high
percentage of PD-L1+ cells in these tumors (Supple-
mental Table S1).When tumors reached 50–120mm3 in
volume, pembrolizumabwas injected at 10 mg/kg i.p.
for the first dose, followed by 5 mg/kg, i.p. dosage on
d 5, 10, 15, 20, and 25.

To confirm that pembrolizumab did bind to its tar-
get PD-1 in our study, we quantified the percentage of
PD-1+ cells in tumor tissues ofNSCLC (LG1306) and TNBC

TABLE 1. HLA matching status between HPSC donors and tumors

Tumor

CD34+ HPSC donors

1 2 3

SA0209 No HLA class I match;
HLA class II: HLA-DRB3, DQB1

BR0744 HLA class I: HLA-A, -B, -C;
HLA class II: HLA-DQB1, DQA1,

DPB1, DPA1
MDA-MB-231 Responder: No HLA class I match;

HLA class II:
HLA-DRB1, DQB1, DQA1, DPA1

BR1126 Responder: HLA class I: HLA-C;
HLA class II: HLA-DPA1

Responder: HLA class I: HLA-A;
HLA class II: HLA-DQA1, DPB1,
DPA1

Responder: HLA class I: HLA-C;
HLA class II; DPA1

LG1306 Responder: No HLA class I match;
HLA class II:
HLA-DRB4, DQA1, DQB1

Responder: no match

LG0997 HLA class I: HLA-A;
HLA class II: HLA-DPA1

LG1208 Nonresponder: no HLA class I
match;

HLA class II: HLA-DRB1, DQB1,
DQA1, DPB1, DPA1

LG0978 Nonresponder 7206: no HLA
class I match;

HLA class II: HLA-DRB3, DQA1,
DPB1, DPA1

Responder 7096: no HLA class I
match;

HLA class II: HLA-DPA1

BL0293 Nonresponder 0912: no HLA
class I match;

HLA class II: HLA-DRB4, DPB1,
DPA1

Responder 6466: HLA class I:
HLA-B, -C;

HLA class II: DPB1, DPA1

HLA matching between CDX/PDX tumor and CD34+ HPSC donors. HLA typing for all tumors and HPSC donors used was performed at the
University of Oklahoma Health Sciences Center, as described in Materials and Methods. In brief, genomic DNA was extracted from HPSCs using a
QIAamp DNA blood kit (Qiagen), and a DNEasy Blood & Tissue Kit (Qiagen) was used to extract genomic DNA from the tumor samples. Four-
digit HLA types were determined using the HLA typing program Assign SBT (Olerup). The HLA matching loci between the CDX/PDX tumor
and HPSC donors are shown.
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Figure 2. Pembrolizumab inhibited tumor growth in Onco-HuNSG mice. A) Experimental design and treatment schedule for
anti-PD-1 and chemotherapy against CDX and PDX tumors. Treatments started when tumors reached 50–120 mm3 in volume. B,
C) Animals were randomized into different experimental groups. Tumors from LG1306P5 (B) and MDA-MB-231 (C) Onco-
HuNSG mice were processed into single-cell suspensions and stained, as described in Materials and Methods, for flow cytometric
analysis. PD-1 was stained on both CD452 and CD45+ populations. D) MDA-MB-231 human breast cancer cells (5 3 106) in
matrigel were injected into mammary fat pads of HuNSG mice. Vehicle control saline was injected intraperitoneally every 5 d for
25 d. Pembrolizumab was injected at 10 mg/kg on d 0, followed by 5 mg/kg on d 5, 10, 15, 20, and 25. E) TNBC PDX tumor
BR1126P5 was trocared subcutaneously into HuNSG mice. Vehicle control saline was injected intraperitoneally every 5 d for 25 d.
Cisplatin was injected at 2 mg/kg, i.v. on d 0, 7, and 14. Pembrolizumab was injected at 10 mg/kg, i.p. on d 0, followed injection at
5 mg/kg, i.p. on d 5, 10, 15, and 20. On d 21, both the cisplatin and pembrolizumab treatment groups have significantly smaller
tumor size compared with the vehicle control group. F) NSCLC PDX LG1306P5 was trocared subcutaneously into HuNSG mice.
Vehicle control saline and pembrolizumab (5 mg/kg) were injected intraperitoneally every 5 d for 25 d. For experiments with 2
groups, tumor growth response curves were analyzed by the Multivariate ANOVA test, followed by univariate test with JMP 11
software (D, F). For the experiment with 3 groups, tumor growth curves were analyzed by 2-way ANOVA, followed by Dunnett’s
posttests using GraphPad Prism (E). *P , 0.05, **P , 0.01, ***P , 0.001.
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(MDA-MB-231) Onco-HuNSGmice by flow cytometry. As
shown in Fig. 2B, C, pembrolizumab treatment significantly
decreasedPD-1+celldetection inhCD45+cells inboth tumor
models (P, 0.01 andP, 0.0001). Percentagesof PD-1+ cells
in the hCD452 population in the TNBC (MDA-MB-231)
Onco-HuNSG tumors were also significantly decreased
(P, 0.0001), indicating that pembrolizumab binding to its
targetmight competewithsubsequentanti-PD-1stainingby
antibody detection and prevented PD-1 detection by flow
cytometry. In addition, the percentage of PD-L1+ cells in
hCD45+ or hCD452 cell populations was not affected by
pembrolizumab treatment (Supplemental Fig. S2).

We demonstrated that pembrolizumab treatment sig-
nificantly delayed TNBC (MDA-MB-231) CDX growth
compared with the vehicle control saline-treated Onco-
HuNSG group (P, 0.001; Fig. 2D). Individual mouse re-
sponses to different treatments were also displayed in
Supplemental Fig. S3A. Pembrolizumab also significantly
inhibited tumor growth in both TNBC (BR1126P5) and
NSCLC (LG1306P5) PDX Onco-HuNSG models (Fig. 2E,
F). In the TNBC (BR1126P5)model, cisplatinwas used as a
positive control for tumor growth inhibition. Cisplatin is a
chemotherapeutic drug that demonstrated efficacy in
TNBC (BR1126P3) tumor growth inhibition in NSG mice
(Supplemental Fig. S4). In the TNBC (BR1126P5) Onco-
HuNSG mice, cisplatin treatment resulted in significant
tumor growth inhibition as well (Fig. 2E; P , 0.001; Sup-
plemental Fig. S3B). In the NSCLC (LG1306P5) Onco-
HuNSG mice, pembrolizumab also significantly reduced
tumor growth (Fig. 2F; P, 0.05).

HPSC donor variation to anti-PD-1 therapy in
Onco-HuNSG mice

Pembrolizumabdemonstrated a 30–35%durable response
in patients with advanced melanoma, but not all patients
responded to pembrolizumab treatment (28). The variable
responses to anti-PD-1 therapy inpatientsmight be a result
of the interplay between the unique tumor microenviron-
ment and the immune system in each patient. To test the
impact of HPSC donor variability in Onco-HuNSG
responses to anti-PD-1 therapy, we studied treatment
responses in the same PDX tumor-bearing Onco-HuNSG
mice generated from different HPSC donors. As shown in
Fig. 3A, B and Supplemental Fig. S3C, D, in donor 6466-
engrafted bladder PDX (BL0293P3) Onco-HuNSG mice,
pembrolizumabsignificantly inhibitedbladder (BL0293P3)
tumor growth (P, 0.05),whereas in donor 0912-engrafted
bladder PDX (BL0293P3) Onco-HuNSG mice did not re-
spond to pembrolizumab treatment. InNSCLC (LG0978P5)
Onco-HuNSG, tumor growth in donor 7096-engrafted
Onco-HuNSG mice was significantly inhibited by
pembrolizumab (Fig. 3C; P, 0.05; Supplemental Fig. S3E),
but NSCLC (LG0978P5) growth was not affected by pem-
brolizumab treatment in donor 7206-engrafted Onco-
HuNSG mice (Fig. 3D and Supplemental Fig. S3F),
suggestingdonorvariation inresponse toanti-PD-1 therapy.

Next, we collected blood from the NSCLC (LG0978P5)
Onco-HuNSG mice, and immune cell populations were
analyzed by flow cytometry. We observed that CD4+ and

CD8+ T cells were significantly increased inOnco-HuNSG
mice engrafted with the responder donor 7096 in NSCLC
(LG0978P5) Onco-HuNSG mice (Fig. 3E). In contrast,
CD45+ leukocytes and CD4+ and CD8+ T cells from the
pembrolizumab group all remained at the levels similar to
the saline-treated control group in Onco-HuNSG mice
established using the nonresponder donor 7206 (Fig. 3F).
Wealso analyzed theTILs frombothdonors in theNSCLC
(LG0978P5) lung model by flow cytometry, but the per-
centage of TILs in this model was barely detectable above
background levels (,1%; data not shown).

To investigate the factors contributing to the successful
response of Onco-HuNSG mice to anti-PD-1 therapy, we
hypothesized that the natural level of PD-1 expression on
CD45+ leukocytes might influence the efficacy of pem-
brolizumab. In all of the tumor models that were tested,
including NSCLC (LG1306, LG1208, LG0978), TNBC
(MDA-MB-231), and sarcoma (SA0209), we did not find
such correlation (data not shown). Therefore, the prevalence
of PD-1+ leukocytes within tumor does not determine the
tumor response of Onco-HuNSG mice to pembrolizumab.
In addition,we also compared the pretreatment T-cell levels
in different tumor models. Although the levels of human
T cells vary from donor to donor, successful responses to
pembrolizumab treatment were observed in Onco-HuNSG
mice that have 10–23%of pretreatment T-cell levels in blood
circulation (data not shown).

Next, we typedHLA from all HPSC donors used in this
studyandcompared to the tumordonorHLA(Table 1).We
found that in all Onco-HuNSG models used, most of the
HPSC donors and tumors were partially matched for sev-
eral major HLA class I and II loci (Table 1). In the bladder
PDX (BL0293P3) Onco-HuNSG mice, both the responder
and the nonresponder HPSC donors had multiple HLA
class II loci matchedwith the bladder PDX tumor, but only
the responder donor had 2 HLA class I loci matched with
the bladder PDX tumor (Table 1). In contrast, the responder
donor in the lung (LG0978P5) Onco-HuNSG mice had no
major HLA class I match with the lung (LG0978P5) PDX
tumor (Table 1). In the NSCLC (LG0978P5) Onco-HuNSG
model, the nonresponder donor (donor 7206) had 4 HLA
class II matches but no major HLA class I match with the
PDX tumor, which was similar to the matching status of
“donor 1” in the TNBC (MDA-MB-231) model. However,
donor 1 used in the TNBC (MDA-MB-231) Onco-HuNSG
model did respond to anti-PD-1 therapy (Fig. 2D). In the
TNBC(BR1126P5)Onco-HuNSGmodel, all 3HPSCdonors
were partially matched with the TNBC (BR1126P5) PDX
tumor at both HLA class I and class II loci, and all 3 HPSC
donors responded to pembrolizumab treatment (Supple-
mental Fig. S5). Therefore, we did not discover any HLA
matching pattern in major loci that can determine the re-
sponse rates of human HPSC donors to anti-PD-1 therapy.

Immune cell infiltration in tumors from Onco-
HuNSG mice treated with anti-PD-1 therapy

Weexamined immunecell populations inNSCLC(LG1306)
and TNBC (MDA-MB-231) Onco-HuNSG mice following
pembrolizumab treatment. Over 50% of the leukocytes in
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peripheral blood were hCD45+ in both NSCLC (LG1306)
and TNBC (MDA-MB-231) Onco-HuNSG mice with no
significant differences in percentages of hCD45+ cells be-
tween mice that received pembrolizumab or saline con-
trol treatment (Fig. 4A, B). We found that in peripheral
blood, pembrolizumab treatment increased numbers of
both CD4+ and CD8+ T cells in NSCLC (LG1306) Onco-
HuNSG mice (Fig. 4A) but decreased numbers of both
T-cell populations inTNBC(MDA-MB-231)Onco-HuNSG
mice (Fig. 4B). The increase of CD4+ and CD8+ T-cell

numbers in peripheral blood of pembrolizumab-treated
NSCLC (LG1306) Onco-HuNSG mice is consistent with
the aforementioned responder donor-engrafted lung
PDX NSCLC (LG0978) Onco-HuNSG mice (Fig. 3E).
Therefore, the composition of immune cell populations
postpembrolizumab treatment may be tumor model
dependent.

In the tumor tissues of Onco-HuNSG mice, no signifi-
cantdifferences innumbersofTILswereobserved ineither
group in theNSCLC (LG1306)model (Fig. 4C),whereas in

Figure 3. Donor variations in response to pembrolizumab treatment in bladder (BL0293P3) and NSCLC (LG0978P5) Onco-
HuNSG mice. A, B) Tumor growth curves of PDX bladder tumor BL0293P3 Onco-HuNSG in responder and nonresponder
donors. The BL0293P3 tumor was implanted subcutaneously into HuNSG mice, established from 2 donor CD34+ HPSC sources:
donor 6466 (A) and donor 0912 (B). Vehicle control saline was injected intraperitoneally twice a week until the end of the study.
Pembrolizumab was injected 10 mg/kg, i.p. on d 0 followed by 5 mg/kg twice a week until the end of the study. C, D) Tumor
growth curves of PDX NSCLC (LG0978P5) Onco-HuNSG in responder and nonresponder donors. The LG0978P5 tumor was
trocared subcutaneously into HuNSG mice from 2 donor CD34+ HPSC sources: donor 7096 (C) and donor 7206 (D). Vehicle
control saline was injected intraperitoneally every 5 d for 20 d on d 0, 5, 10, 15, and 20. Pembrolizumab was injected at 10 mg/kg,
i.p. on d 0, followed by 5 mg/kg, i.p. injection on d 5, 10, 15, and 20. E, F) Whole blood from NSCLC (LG0978P5) Onco-HuNSG
donor 7096 (E) and donor 7206 (F) mice was processed into single-cell suspension and stained for hCD45, hCD3, hCD4, and
hCD8, as described in Materials and Methods, for flow cytometric analysis. Nonparametric Mann-Whitney U test was performed
to compare the cell numbers in different treatment groups. *P , 0.05.
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the TNBC (MDA-MB-231) tumor model, pembrolizumab
decreased the frequency of both CD45+ and CD3+CD4+

T-cell populations (Fig. 4D; P , 0.05). B cells were not
detected in the tumor tissues in either of these tumormodels
(data not shown).

To determine the location of TILs, in situ immunofluo-
rescence microscopy analysis of NSCLC (LG1306) tumors
was performed (Fig. 5A, B). Our results showed low num-
bers of CD8+ T cells present in both tumor margin (stromal
tumoredge) and inside tumorparenchyma(tumor center) in
saline-treated vehicle (Fig. 5A) and pembrolizumab (Fig. 5B)
groups. However, in the TNBC (MDA-MD-231) Onco-
HuNSG tumormodel (Fig. 5C, D), we found large numbers
of CD8+ T cells scattered around the tumor margin in the
saline-treated vehicle group (Fig. 5C), whereas most CD8+

T cells were located within the tumor parenchyma in pem-
brolizumab group (Fig. 5D). Further quantification analysis
usinghistocytometrywasalsoconducted toshowthedrastic
difference between T cells located in the tumor center vs. the
tumor parenchyma (Supplemental Fig. S6). Our data also
indicate that the number of tumor-infiltrating CD8+ T cells
was quantitatively higher in the TNBC (MDA-MB-231) tu-
mor than in the NSCLC (LG1306) tumor, which was con-
sistentwith our flow cytometry analysis of the tumor tissues
from these 2 models (Fig. 4C, D).

Tumor response to anti-PD-1 therapy in Onco-
HuNSG mice is mediated by hCD8+ T cells

To evaluate the role of human immune cells in tumors after
pembrolizumabtreatment,wecomparedthe tumorgrowth

rates of the PDX lung model NSCLC (LG1306P5) in Onco-
HuNSG andNSGmice (Fig. 6A, B). In Onco-HuNSGmice,
11 out of 13 mice responded to pembrolizumab treatment
(Fig. 6A). In contrast, in NSG mice, pembrolizumab treat-
ment resulted in a similar tumor growth rate as saline-
treated vehicle control mice (Fig. 6B), indicating that the
efficacy of pembrolizumab is dependent on the presence of
human immune cells. Indeed, tumor regression in patients
after pembrolizumab treatment requires pre-existing CD8+

T cells that are negatively regulated by PD-1/PD-L1-
mediated adaptive-immune resistance (34). To define the
role of hCD8+ T cells in the response to pembrolizumab in
Onco-HuNSG mice, we depleted hCD8+ T cells by anti-
hCD8 mAb treatment before pembrolizumab treatment.
Our data revealed in TNBC (MDA-MB-231) Onco-HuNSG
mice that the depletion of hCD8+ T cells results in the ab-
rogation of the efficacy of pembrolizumab (Fig. 6C; P ,
0.001). Therefore, hCD8+ T cells are required for anti-PD-1
therapy efficacy against the TNBCMDA-MB-231 tumor in
Onco-HuNSGmice.

DISCUSSION

Here, we show that the Onco-HuNSG model, using allo-
geneicbutHLApartiallymatchedCD34+HPSCdonors and
tumors, might be used for cancer immunotherapy studies.
Indeed, we demonstrated significant tumor growth delay
following pembrolizumab (anti-PD-1) therapy in Onco-
HuNSGmice.MoreCD8+T cellswere found infiltrating the
center of the tumor post-anti-PD-1 treatment, whereas
most CD8+ T cells in vehicle-treated control mice were

Figure 4. Human immune cell populations in peripheral blood and tumors of the NSCLC (LG1306) and TNBC (MDA-MB-231) Onco-
HuNSG model. Whole blood from LG1306 (A) or MDA-MB-231 (B) Onco-HuNSG mice was processed into single-cell suspensions and
stained, as described in Materials and Methods, for flow cytometric analysis. Tumor tissues from LG1306 (C) or MDA-MB-231 (D) Onco-
HuNSGmice were processed into single-cell suspensions and stained, as described in Materials and Methods, for flow cytometric analysis.
The percentage of hCD3+CD4+ T cells, hCD3+CD8+ T cells, and hCD19+ B cells is shown within CD45+ cells. *P , 0.05; **P , 0.01.
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scattered at the margin of the tumor. Our data further
documented that the efficacy of pembrolizumab was
mediated by hCD8+ T cells.

The immune responses in allogeneic
Onco-HuNSG mice

The immune system functionality of human HPSC-
engrafted NSGmice has been validated in studies, demon-
strating the rejection of major histocompatibility complex
(MHC) mismatched human islets allografts (35) and xeno-
geneicmouse skin grafts (36). The inability ofOnco-HuNSG
mice to reject partially HLA-matched tumors confirms the
sensitivity of the humanized mouse immune system to
regulation and provides a powerful, newmodel to identify
immune-evasion mechanisms for cancers and to test im-
munotherapies to overcome tumor-mediated immune
suppression.

The mechanisms for tumor rejection in Onco-HuNSG
mice treated with anti-PD-1 remain to be elucidated.
However, a large fraction of T cells developing in HPSC-
engraftedmice are educated in themouse thymus and are
restricted to H2-MHC (37). Thus, we hypothesize that
recognition of tumors in Onco-HuNSG mice is mediated
by alloreactive or xenoreactive T cells, similar to the
mechanisms involved in a “graft versus tumor” response.
Clinical studies have suggested that immunotherapies
also enhance graft versus tumor responses, and these
findings support the clinical relevance of the Onco-
HuNSG model (38). Ishikawa et al. (5) demonstrated that
positive selection on human HLA+ HPSC-derived cells in
the mouse thymus is possible, suggesting an allogeneic

response to tumor recognition in theOnco-HuNSGmodel.
Numerous studies have shown the existence of highly
peptide-specific alloreactive T cells [reviewed in Felix and
Allen (39)], indicating the generation of tumor peptide-
specific T-cell activation in the allogeneic response. The
abundant cytokines and T-cell costimulatory ligands
generated by the allogeneic response might favor the de-
velopment of T-cell responses to tumor peptides, over-
coming T-cell anergy previously (40). The development of
humanizedmousemodels to studyHLA-restricted tumor
antigen-specific T-cell responses is underway and will re-
quire the complete MHC matching between engrafting
HPSCs and the tumor, as well as the use of HLA-
expressing NSGmice for human T-cell development (41).
Recent advancements in generating human HPSCs from
inducedpluripotent stemcells or embryonic stemcellswill
facilitate the generation of humanizedOnco-HuNSGmice
that are engrafted with autologous tumors and HPSCs in
the future (42).

T-cell profile in Onco-HuNSG mice after
pembrolizumab treatment

To evaluate the efficacy of the anti-PD-1 immune-checkpoint
inhibitor pembrolizumab in the Onco-HuNSG model, we
selected 3 tumormodelswith highPD-L1 surface-expression
levels on tumors. Pembrolizumab exhibited a significant tu-
mor growth inhibitory effect on all 3 tumormodels tested in
Onco-HuNSG mice (Fig. 2). Ashizawa et al. (43) has shown
that anti-PD-1 treatment delayed the growth of 2 CDX
tumors (i.e., head and neck squamous cell carcinoma SCC-3
andglioblastomaU87) inMHCclass I and IIdouble-knockout

Figure 5. In situ characterization of CD8+ T-cell
infiltration into the tumor. A, B) Tumor tissues
from LG1306 were processed for histologic
analysis and triple stained with DAPI (blue),
hCD45 (yellow), and hCD8 (red). Representa-
tive tumor samples are shown from LG1306
treated with vehicle control (A) or pembroli-
zumab (B). CD8+ T cells were observed in both
the tumor margin and center. C, D) Tumor
tissues from MDA-MB-231 were processed for
histologic analysis and stained with DAPI (blue)
and hCD8 (red). Representative tumor samples
are shown fromMDA-MB-231 treated with vehicle
control (C) or pembrolizumab (D). More CD8+

T cells were observed in the tumor center than
the tumor margin in the pembrolizumab-treated
tumor.
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humanized peripheral blood mononuclear cell-NOD-scid/
IL-2Rg nullmice.Wedemonstratedherein inOnco-HuNSG
mice thatpembrolizumabcan inhibit tumorgrowth, not only
in CDX but also in various PDX tumor models. Our results

showed that the efficacy of pembrolizumab is dependent
on the engraftment of an adaptive human immune sys-
tem in Onco-HuNSGmice, specifically hCD8+ T cells, as
the tumor inhibitory effect of pembrolizumab was ab-
sent inNSGmice that lacked human immune cells and in
hCD8+ T-cell-depleted Onco-HuNSG mice (Fig. 6).

We found that pembrolizumab increased both CD4+

and CD8+ T-cell numbers in the blood of the 2 NSCLC
(LG1306P5 and LG0978P5 responder) Onco-HuNSG
models but decreased both CD4+ and CD8+ T-cell num-
bers in the blood of the TNBC (MDA-MB-231) Onco-
HuNSGmodel (Figs. 3 and 4).Anti-PD-1 therapyhas been
demonstrated todecreaseTreg cell populations (44, 45). It is
possible that there are more Treg cells in the peripheral
blood and tumor tissues of the MDA-MB-231 Onco-
HuNSG model that are susceptible to pembrolizumab
treatment. Therefore, anti-PD-1 therapy resulted in altered
compositions of human T-cell populations in a tumor
model-dependent manner.

We also found different distribution patterns of CD8+

T cells in pembrolizumab-treated tumors compared with
the vehicle saline-treated group. In TNBC (MDA-MB-231)
Onco-HuNSG tumors, successful pembrolizumab treat-
ment resulted in more CD8+ T-cell infiltration into the
center of the tumor,whereasmostCD8+T cells localizedat
themarginof the tumor in thevehicle salinegroup (Fig. 5C,D).
The ratio of CD8+ T cells in the tumor center to invasive
margin is positively correlated to overall survival rate in
patients with colorectal cancer (46). Moreover, PD-L1
expression has been detected mainly at the invasive mar-
gin of the tumor, colocalizing with TILs in patients with
cancer (47), possibly acting as a barrier for neighboring
TILs, which could otherwise enter the center of the tumor.
In this study, we did not detect proliferation or increased
intratumoral infiltration of CD8+ T cells, as reported by
others (34). The inconsistency between our data and the
clinical data (48), in terms of intratumoral CD8+ T-cell in-
filtrates, could be a result of inefficient human lymphocyte
trafficking to the tumor, aswell as the dampened dendritic
cell activation in theOnco-HuNSGmice (49, 50).Thismight
be why we detected increased CD4+ and CD8+ T-cell
populations in the blood of NSCLC (LG1306) Onco-
HuNSG mice (Fig. 4A) but not at the tumor site (Fig. 4C).
It is also possible that the release of the immune check-
points by anti-PD-1 blockade, using pembrolizumab, can
lead to more activated effector TILs on a per-cell basis.

HPSC donor variability in response
to pembrolizumab

We observed variability from different CD34+ HPSC do-
nors, which is in line with different response rates of pa-
tients to anti-PD-1 therapy in the clinics. The underlying
mechanisms of donor variation in response to pem-
brolizumab treatment are unclear. In the NSCLC
(LG0978P5) Onco-HuNSGmodel, we found higher CD4+

and CD8+ T-cell levels in the anti-PD-1 treatment group
compared with vehicle control in responder donor mice
peripheral blood (Fig. 3E), whereas no increased T-cell
levels were observed in nonresponder donor mice

Figure 6. Efficacy of pembrolizumab is mediated by hCD8+

T cells in Onco-HuNSG mice. NSCLC PDX LG1306P5 was
implanted in HuNSG mice (A) or NSG mice (B). A) Vehicle
control saline or pembrolizumab (5 mg/kg) was injected
intraperitoneally every 5 d for 30 d on d 0, 5, 10, 15, 20, and 25
in HuNSG mice. B) Vehicle control saline and pembrolizumab
(5 mg/kg) was injected intraperitoneally every 5 d for 20 d on
d 0, 5, 10, and 15 in NSG mice. C) MDA-MB-231 cells (53 106)
were injected into the mammary fat pads in HuNSG mice.
When the tumor reached 50–120 mm3, the mice were treated
with pembrolizumab or vehicle on d 1, 6, 11, 16, 21, and 26.
Isotype control antibody or anti-hCD8 antibody was injected
intraperitoneally on d 0, 7, 14, 21, and 28. Tumor growth
response curves were analyzed by 2-way ANOVA, followed by
Dunnett’s posttests. ***P , 0.001.
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(Fig. 3F). Furthermore, we did not find any correlation
betweenHLA-matchingstatusandresponse rate (Table1).
Immunotherapies that rely on T-cell activation against
tumor cells are driven by recognition of neoantigens
formed as a consequence of tumor-specific DNA muta-
tions, where only a minority of the neoantigens was rec-
ognized by autologous T cells from the patients. In
addition, even within healthy donor populations, only
some donors can induce specific T-cell reactivity against
the neoantigens from the tumor (51). Therefore, the donor
variationexhibited in theOnco-HuNSGmodelmayderive
from the vast variety of the T-cell repertoire across the
human population,which leads to antitumor responses in
some but not all patients.

In summary,ourOnco-HuNSGmodelprovidesanovel
and promising platform for testing efficacy of immuno-
therapies, such as immune-checkpoint inhibitors in acti-
vation of T cells.
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