145 research outputs found

    Combination of optison with ultrasound and electroporation increases albumin and thrompoietin transgene expression whilst elongation factor promoter prolongs its duration

    Get PDF
    Hypoalbuminaemia and thrombocytopaenia are two clinical problems frequently encountered in patients with chronic liver failure or cancer following treatment with chemotherapy. The current study was designed to assess the magnitude and duration of thrombopoietin and albumin transgene expression hoping to increase the production of albumin and platelets. Immunocompetent and immunocompromised (nude) mice were injected intramuscularly with plasmids expressing either human serum albumin or human thrombopoietin. The therapeutic expression cassette of the plasmids was driven by either CMV or elongation factor 1- promoters respectively. In order to achieve muscle specific expression both gene constructs included the myosin light chain enhancer. The experiment was conducted in a group of mice which were injected with the transgene plasmid either in normal saline or plasmid followed by electroporation, ultrasound, optison and a combination of all three to increase transgene expression. The result showed that plasmids with the CMV promoter induced the highest transgenic expression lasting for one week whilst plasmids with the elongation factor 1-alpha promoter produced a weaker expression lasting for a longer and more stable duration of expression up to 3 months in both immunocompetent and nude mice. The combination of electroporation and ultrasound with Optison TM provided the highest transgene expression. We concluded that it would be possible to increase albumin and platelets production by an intramuscular injection of plasmids expressing human albumin and thromopoietin. A combination of electroporation and ultrasound with Optison TM can increase their expression

    Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice

    Get PDF
    Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1−/− mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1−/− mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes

    Role of Ucp1 enhancer methylation and chromatin remodelling in the control of Ucp1 expression in murine adipose tissue

    Get PDF
    Aims/hypothesis Increasing the expression of the brown adipose tissue-specific gene uncoupling protein-1 (Ucp1) is a potential target for treating obesity. We investigated the role of DNA methylation and histone modification in Ucp1 expression in adipose cell lines and ex vivo murine adipose tissues. Methods Methylation state of the Ucp1 enhancer was studied using bisulphite mapping in murine adipose cell lines, and tissue taken from cold-stressed mice, coupled with functional assays of the effects of methylation and demethylation of the Ucp1 promoter on gene expression and nuclear protein binding. Results We show that demethylation of the Ucp1 promoter by 5-aza-deoxycytidine increases Ucp1 expression while methylation of Ucp1 promoter–reporter constructs decreases expression. Brown adipose tissue-specific Ucp1 expression is associated with decreased CpG dinucleotide methylation of the Ucp1 enhancer. The lowest CpG dinucleotide methylation state was found in two cyclic AMP response elements (CRE3, CRE2) in the Ucp1 promoter and methylation of the CpG in CRE2, but not CRE3 decreased nuclear protein binding. Chromatin immunoprecipitation assays revealed the presence of the silencing DiMethH3K9 modification on the Ucp1 enhancer in white adipose tissue and the appearance of the active TriMethH3K4 mark at the Ucp1 promoter in brown adipose tissue in response to a cold environment. Conclusions/interpretation The results demonstrate that CpG dinucleotide methylation of the Ucp1 enhancer exhibits tissue-specific patterns in murine tissue and cell lines and suggest that adipose tissue-specific Ucp1 expression involves demethylation of CpG dinucleotides found in regulatory CREs in the Ucp1 enhancer, as well as modification of histone tails

    Streptococcus pneumoniae induced c-Jun-N-terminal kinase- and AP-1 -dependent IL-8 release by lung epithelial BEAS-2B cells

    Get PDF
    BACKGROUND: Although pneumococcal pneumonia is one of the most common causes of death due to infectious diseases, little is known about pneumococci-lung cell interaction. Herein we tested the hypothesis that pneumococci activated pulmonary epithelial cell cytokine release by c-Jun-NH(2)-terminal kinase (JNK) METHODS: Human bronchial epithelial cells (BEAS-2B) or epithelial HEK293 cells were infected with S. pneumoniae R6x and cytokine induction was measured by RT-PCR, ELISA and Bioplex assay. JNK-phosphorylation was detected by Western blot and nuclear signaling was assessed by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). JNK was modulated by the small molecule inhibitor SP600125 and AP1 by transfection of a dominant negative mutant. RESULTS: S. pneumoniae induced the release of distinct CC and CXC, as well as Th1 and Th2 cytokines and growth factors by human lung epithelial cell line BEAS-2B. Furthermore, pneumococci infection resulted in JNK phosphorylation in BEAS-2B cells. Inhibition of JNK by small molecule inhibitor SP600125 reduced pneumococci-induced IL-8 mRNA expression and release of IL-8 and IL-6. One regulator of the il8 promoter is JNK-phosphorylated activator protein 1 (AP-1). We showed that S. pneumoniae time-dependently induced DNA binding of AP-1 and its phosphorylated subunit c-Jun with a maximum at 3 to 5 h after infection. Recruitment of Ser(63/73)-phosphorylated c-Jun and RNA polymerase II to the endogenous il8 promoter was found 2 h after S. pneumoniae infection by chromatin immunoprecipitation. AP-1 repressor A-Fos reduced IL-8 release by TLR2-overexpressing HEK293 cells induced by pneumococci but not by TNFα. Antisense-constructs targeting the AP-1 subunits Fra1 and Fra2 had no inhibitory effect on pneumococci-induced IL-8 release. CONCLUSION: S. pneumoniae-induced IL-8 expression by human epithelial BEAS-2B cells depended on activation of JNK and recruitment of phosphorylated c-Jun to the il8 promoter

    Adipose atrophy in cancer cachexia:morphologic and molecular analysis of adipose tissue in tumour-bearing mice

    Get PDF
    Extensive loss of adipose tissue is a hallmark of cancer cachexia but the cellular and molecular basis remains unclear. This study has examined morphologic and molecular characteristics of white adipose tissue in mice bearing a cachexia-inducing tumour, MAC16. Adipose tissue from tumour-bearing mice contained shrunken adipocytes that were heterogeneous in size. Increased fibrosis was evident by strong collagen-fibril staining in the tissue matrix. Ultrastructure of 'slimmed' adipocytes revealed severe delipidation and modifications in cell membrane conformation. There were major reductions in mRNA levels of adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPα), CCAAT/enhancer binding protein beta, peroxisome proliferator-activated receptor gamma, and sterol regulatory element binding protein-1c (SREBP-1c) in adipose tissue, which was accompanied by reduced protein content of C/EBPα and SREBP-1. mRNA levels of SREBP-1c targets, fatty acid synthase, acetyl CoA carboxylase, stearoyl CoA desaturase 1 and glycerol-3-phosphate acyl transferase, also fell as did glucose transporter-4 and leptin. In contrast, mRNA levels of peroxisome proliferators-activated receptor gamma coactivator-1alpha and uncoupling protein-2 were increased in white fat of tumour-bearing mice. These results suggest that the tumour-induced impairment in the formation and lipid storing capacity of adipose tissue occurs in mice with cancer cachexia. © 2006 Cancer Research UK

    Effect of expression of adenine phosphoribosyltransferase on the in vivo anti-tumor activity of prodrugs activated by E. coli purine nucleoside phosphorylase

    Get PDF
    The use of E. coli purine nucleoside phosphorylase (PNP) to activate prodrugs has demonstrated excellent activity in the treatment of various human tumor xenografts in mice. E. coli PNP cleaves purine nucleoside analogs to generate toxic adenine analogs, which are activated by adenine phosphoribosyl transferase (APRT) to metabolites that inhibit RNA and protein synthesis. We created tumor cell lines that encode both E. coli PNP and excess levels of human APRT, and have used these new cell models to test the hypothesis that treatment of otherwise refractory human tumors could be enhanced by overexpression of APRT. In vivo studies with 6-methylpurine-2′-deoxyriboside (MeP-dR), 2-F-2′-deoxyadenosine (F-dAdo) or 9-β-D-arabinofuranosyl-2-fluoroadenine 5′-monophosphate (F-araAMP) indicated that increased APRT in human tumor cells coexpressing E. coli PNP did not enhance either the activation or the anti-tumor activity of any of the three prodrugs. Interestingly, expression of excess APRT in bystander cells improved the activity of MeP-dR, but diminished the activity of F-araAMP. In vitro studies indicated that increasing the expression of APRT in the cells did not significantly increase the activation of MeP. These results provide insight into the mechanism of bystander killing of the E. coli PNP strategy, and suggest ways to enhance the approach that are independent of APRT

    Metabolic Flux Analysis of Mitochondrial Uncoupling in 3T3-L1 Adipocytes

    Get PDF
    BACKGROUND:Increasing energy expenditure at the cellular level offers an attractive option to limit adiposity and improve whole body energy balance. In vivo and in vitro observations have correlated mitochondrial uncoupling protein-1 (UCP1) expression with reduced white adipose tissue triglyceride (TG) content. The metabolic basis for this correlation remains unclear. METHODOLOGY/PRINCIPAL FINDINGS:This study tested the hypothesis that mitochondrial uncoupling requires the cell to compensate for the decreased oxidation phosphorylation efficiency by up-regulating lactate production, thus redirecting carbon flux away from TG synthesis. Metabolic flux analysis was used to characterize the effects of non-lethal, long-term mitochondrial uncoupling (up to 18 days) on the pathways of intermediary metabolism in differentiating 3T3-L1 adipocytes. Uncoupling was induced by forced expression of UCP1 and chemical (FCCP) treatment. Chemical uncoupling significantly decreased TG content by ca. 35%. A reduction in the ATP level suggested diminished oxidative phosphorylation efficiency in the uncoupled adipocytes. Flux analysis estimated significant up-regulation of glycolysis and down-regulation of fatty acid synthesis, with chemical uncoupling exerting quantitatively larger effects. CONCLUSIONS/SIGNIFICANCE:The results of this study support our hypothesis regarding uncoupling-induced redirection of carbon flux into glycolysis and lactate production, and suggest mitochondrial proton translocation as a potential target for controlling adipocyte lipid metabolism

    Ablation of PGC-1β Results in Defective Mitochondrial Activity, Thermogenesis, Hepatic Function, and Cardiac Performance

    Get PDF
    The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) has been implicated in important metabolic processes. A mouse lacking PGC-1β (PGC1βKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1βKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1β ablation was partially compensated by up-regulation of PGC-1α in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1βKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1β was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1βKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1βKO mice have impaired mitochondrial function. Lack of PGC-1β also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1β plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress
    corecore