152 research outputs found
Octupole transitions in the 208Pb region
The 208Pb region is characterised by the existence of collective octupole states.
Here we populated such states in 208Pb + 208Pb deep-inelastic reactions. γ-ray angular
distribution measurements were used to infer the octupole character of several E3 transitions.
The octupole character of the 2318 keV 17− → 14+ in 208Pb, 2485 keV 19/2
− → 13/2
+ in
207Pb, 2419 keV 15/2
− → 9/2
+ in 209Pb and 2465 keV 17/2
+ → 11/2
− in 207Tl transitions was
demonstrated for the first time. In addition, shell model calculations were performed using two
different sets of two-body matrix elements. Their predictions were compared with emphasis on
collective octupole states.This work is supported by the Science and Technology Facilities Council
(STFC), UK, US Department of Energy, Office of Nuclear Physics, under Contract No. DEAC02-06CH11357
and DE-FG02-94ER40834, NSF grant PHY-1404442
Spectroscopy of Na: Bridging the two-proton radioactivity of Mg
The unbound nucleus Na, the intermediate nucleus in the two-proton
radioactivity of Mg, was studied by the measurement of the resonant
elastic scattering reaction Ne(p,Ne)p performed at 4 A.MeV.
Spectroscopic properties of the low-lying states were obtained in a R-matrix
analysis of the excitation function. Using these new results, we show that the
lifetime of the Mg radioactivity can be understood assuming a sequential
emission of two protons via low energy tails of Na resonances
Measurement of key resonance states for the 40P(p,g)31S reaction rate, and the production of intermediate-mass elements in nova explosions
We report the first experimental constraints on spectroscopic factors and strengths of key resonances in the 30P(p, γ)31Sreaction critical for determining the production of intermediate-mass elements up to Ca in nova ejecta. The 30P(d, n)31Sreaction was studied in inverse kinematics using the GRETINA γ-ray array to measure the angle-integrated cross-sections of states above the proton threshold. In general, negative-parity states are found to be most strongly produced but the absolute values of spectroscopic factors are typically an order of magnitude lower than predicted by the shell-model calculations employing WBP Hamiltonian for the negative-parity states. The results clearly indicate the dominance of a single 3/2−resonance state at 196 keV in the region of nova burning T≈0.10–0.17GK, well within the region of interest for nova nucleosynthesis. Hydrodynamic simulations of nova explosions have been performed to demonstrate the effect on the composition of nova ejecta.Postprint (published version
Genome evolution in the allotetraploid frog Xenopus laevis
To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of ???fossil??? transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17-18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.ope
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Decay properties of resonances and their impact on -process nucleosynthesis
The astrophysical -process is one of the two main processes forming
elements heavier than iron. A key outstanding uncertainty surrounding
-process nucleosynthesis is the neutron flux generated by the
reaction during the He-core
and C-shell burning phases of massive stars. This reaction, as well as the
competing reaction, is
not well constrained in the important temperature regime from --~GK, owing to uncertainties in the nuclear properties of resonances
lying within the Gamow window. To address these uncertainties, we have
performed a new measurement of the reaction in inverse kinematics, detecting the outgoing
deuterons and recoils in coincidence. We have
established a new decay branching ratio of for the key
MeV resonance in , which results in a new
strength for this resonance of eV when combined with
the well-established strength of this resonance. We have
also determined new upper limits on the partial widths of
neutron-unbound resonances at , , and
MeV. Monte-Carlo calculations of the stellar and rates, which incorporate these results, indicate
that both rates are substantially lower than previously thought in the
temperature range from --~GK.Comment: 17 pages, 4 figures, accepted for publication in Phys. Lett.
Angle-integrated measurements of the 26Al (d, n)27Si reaction cross section: a probe of spectroscopic factors and astrophysical resonance strengths
Measurements of angle-integrated cross sections to discrete states in 27Si have been performed studying the 26Al (d, n) reaction in inverse kinematics by tagging states by their characteristic -decays using the GRETINA array. Transfer reaction theory has been applied to derive spectroscopic factors for strong single-particle states below the proton threshold, and astrophysical resonances in the 26Al (p,) 27Si reaction. Comparisons are made between predictions of the shell model and known characteristics of the resonances. Overall very good agreement is obtained, indicating this method can be used to make estimates of resonance strengths for key reactions currently largely unconstrained by experiment
Reaction Channel selection techniques and γ - γ fast-timing spectroscopy using the ν-Ball Spectrometer
The reaction of a pulsed 18O beam on a self-supporting and gold-backed isotopically-enriched 164Dy target of thickness 6.3 mg/cm2 at separate primary beam energies of 71, 76 and 80 MeV was studied at the accelerator at the ALTO facility of the IPN Orsay. The γ rays produced were detected using the newly-constructed ν-Ball spectrometer which comprised of HPGe and LaBr3(Ce) detectors. This conference paper describes the methodology and effectiveness of multiplicity/sum-energy gating, for channel selection between fusion evaporation events and lower multiplicity/energy events from inelastic nuclear scattering and Coulomb excitation of the target, and from two-neutron transfer reactions to 166Dy
Confirmation of a new resonance in 26Si and contribution of classical novae to the galactic abundance of 26Al
© 2023 The Author(s). Published by the American Physical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The 25Al(p ,γ ) reaction has long been highlighted as a possible means to bypass the production of 26Al cosmic γ rays in classical nova explosions. However, uncertainties in the properties of key resonant states in 26Si have hindered our ability to accurately model the influence of this reaction in such environments. We report on a detailed γ -ray spectroscopy study of 26Si and present evidence for the existence of a new, likely ℓ =1 , resonance in the 25Al + p system at Er=153.9 (15 ) keV. This state is now expected to provide the dominant contribution to the 25Al(p ,γ ) stellar reaction rate over the temperature range, T ≈0.1 −0.2 GK. Despite a significant increase in the rate at low temperatures, we find that the final ejected abundance of 26Al from classical novae remains largely unaffected even if the reaction rate is artificially increased by a factor of 10. Based on new, galactic chemical evolution calculations, we estimate that the maximum contribution of novae to the observed galactic abundance of 26Al is ≈0.2 M⊙ . Finally, we briefly highlight the important role that super-asymptotic giant branch stars may play in the production of 26Al.Peer reviewe
- …
