49 research outputs found

    Study of the lineshape of the chi(c1) (3872) state

    Get PDF
    A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations

    Measurement of the CKM angle γγ in B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm \to D π^\pm decays with DKS0h+hD \to K_\mathrm S^0 h^+ h^-

    Get PDF
    A measurement of CPCP-violating observables is performed using the decays B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm\to D \pi^\pm, where the DD meson is reconstructed in one of the self-conjugate three-body final states KSπ+πK_{\mathrm S}\pi^+\pi^- and KSK+KK_{\mathrm S}K^+K^- (commonly denoted KSh+hK_{\mathrm S} h^+h^-). The decays are analysed in bins of the DD-decay phase space, leading to a measurement that is independent of the modelling of the DD-decay amplitude. The observables are interpreted in terms of the CKM angle γ\gamma. Using a data sample corresponding to an integrated luminosity of 9fb19\,\text{fb}^{-1} collected in proton-proton collisions at centre-of-mass energies of 77, 88, and 13TeV13\,\text{TeV} with the LHCb experiment, γ\gamma is measured to be (68.75.1+5.2)\left(68.7^{+5.2}_{-5.1}\right)^\circ. The hadronic parameters rBDKr_B^{DK}, rBDπr_B^{D\pi}, δBDK\delta_B^{DK}, and δBDπ\delta_B^{D\pi}, which are the ratios and strong-phase differences of the suppressed and favoured B±B^\pm decays, are also reported

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→μ + μ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→μ + μ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    Momentum scale calibration of the LHCb spectrometer

    Get PDF
    For accurate determination of particle masses accurate knowledge of the momentum scale of the detectors is crucial. The procedure used to calibrate the momentum scale of the LHCb spectrometer is described and illustrated using the performance obtained with an integrated luminosity of 1.6 fb-1 collected during 2016 in pp running. The procedure uses large samples of J/ψ → μ + μ - and B+ → J/ψ K + decays and leads to a relative accuracy of 3 × 10-4 on the momentum scale

    Контракция (ретракция) сгустков крови и тромбов: патогенетическое и клиническое значение

    No full text
    This review is the frst systematic description of spontaneous blood clot shrinkage, aka clot retraction or contraction. The driver of this process is the contraction of the actin-myosin complex inside activated platelets. The platelet contractile force is transmitted via focal contacts to extracellular fbrin fbers, causing compaction of the three-dimensional fbrin network along with the embedded erythrocytes. The main structural consequences of clot contraction include redistribution of the fbrin-platelet meshwork toward the periphery of the clot and compression of erythrocytes in the core of the clot followed by their deformation into polyhedral cells called “polyhedrocytes”. These structural signatures of clot contraction in ex vivo thrombi and thrombotic emboli derived from various locations indicate that thrombi undergo intravital contraction within blood vessels in vivo. Pathogenic consequences of clot contraction may vary. Thus, contraction of a thrombus changes the vessel lumen, thereby modulating local blood flow in the thrombotic occlusion area. Thrombus shrinkage changes its porosity and permeability for fbrinolytic enzymes. The extent of thrombus compression and densifcation can determine the likelihood of its mechanical rupture, i. e. thrombotic embolization. Several clinical studies have revealed that clot contraction is suppressed in the blood of patients with (pro)thrombotic conditions, such as ischemic stroke, venous thrombosis, and systemic lupus erythematosus. This reduction of clot contraction is due to platelet dysfunction caused by their chronic hyperactivation and energetic exhaustion. Clot contraction depends significantly on cellular and protein composition of the blood; in particular, a high hematocrit and hyperfbrinogenemia both reduce clot contraction, while activated monocytes enhance clot contraction by expressing tissue factor and promoting thrombin generation. The degree of clot contraction abnormalities in thrombotic states generally correlates with disease severity, which confrms the pathogenic importance of clot contraction. In patients with pulmonary embolism clot contraction is decreased signifcantly compared to that in isolated venous thrombosis, indirectly suggesting that a less compacted thrombus is more prone to embolization. This observation points to a potential diagnostic and prognostic value of the clot contraction assay as a novel test for ongoing or threatening thromboembolism. Collectively, contraction of blood clots and thrombi is an underappreciated and understudied process that has a major pathogenic and clinical signifcance in (pro)thrombotic conditions of various etiologies.Обзор представляет собой первое систематическое описание самопроизвольного сжатия сгустков крови, известного под названием ретракции, или контракции. Движущая сила этого процесса – сокращение актомиозинового комплекса внутри активированных тромбоцитов. Сократительная сила тромбоцитов передается через фокальные контакты на волокна фибрина, вызывая компактизацию трехмерной фибриновой сети и заключенных в ней эритроцитов. Главными структурными последствиями контракции сгустков крови считаются перераспределение фибрино-тромбоцитарных агрегатов на поверхность сгустка и компрессия эритроцитов в центре сгустка, их деформация с образованием многогранников (полиэдров), названных полиэдроцитами. Наличие морфологических признаков контракции в ex vivo тромбах и тромботических эмболах разной локализации свидетельствует о том, что они претерпевают прижизненную внутрисосудистую контракцию in vivo. Патогенетические последствия контракции тромбов могут быть разными. Так, степень контракции тромба изменяет просвет сосуда и тем самым модулирует локальную гемодинамику в области тромботической окклюзии; сжатие тромба меняет его порозность и проницаемость для фибринолитических ферментов; степень уплотнения может определять риск эмболизации, то есть отрыва тромба. Клинические исследования показали, что в крови больных с (про)тромботическими состояниями, такими как ишемический инсульт, венозный тромбоз, системная красная волчанка, контрактильная способность сгустков существенно угнетена вследствие дисфункции тромбоцитов, обусловленной их хронической гиперактивацией и энергетическим истощением. Контракция сгустков существенно зависит от белкового и клеточного состава крови, в частности, высокий гематокрит и гиперфибриногенемия угнетают контракцию, а активированные моноциты усиливают сокращение тромбоцитов путем экспрессии тканевого фактора и усиления генерации тромбина. Степень нарушения контракции сгустков крови при тромботических состояниях в целом коррелирует с тяжестью заболевания, что указывает на патогенетическое значение контракции. Достоверное снижение степени контракции у пациентов с легочной тромбоэмболией по сравнению с изолированным венозным тромбозом косвенно подтверждает, что менее сжатый тромб более склонен к эмболизации. Это говорит о потенциальном диагностическом и прогностическом значении лабораторного теста на контракцию сгустков крови как признака текущей или угрожающей тромбоэмболии. По совокупности имеющихся данных, контракция сгустков крови и тромбов представляет собой недооцененный и малоизученный процесс, который имеет большое патогенетическое и клиническое значение при тромбозах и предтромботических состояниях различной этиологии

    Manufacture of sapphire ribbons with low dislocation density

    No full text
    Uniform thermal field with the axial temperature gradient of 11.6 K/cm was formed in a cylindrical heater. There were obtained 15x85x300 mm3 sapphire ribbons with dislocation density up to 103 cm-2. The dislocation density of sapphire ribbons at the axial temperature gradient of 11.6 K/cm was found to be comparable with the one in the crystals obtained by the Czochralski and Kyropoulos methods

    Impaired contraction of blood clots precedes and predicts postoperative venous thromboembolism

    No full text
    © 2020, The Author(s). Deep vein thrombosis (DVT) is a common but unpredictable complication of surgical interventions. To reveal an association between the blood clot contraction (retraction) and the incidence of postoperative venous thrombosis, 78 patients with brain tumors that were operated on were studied, of which 23 (29%) were diagnosed with postoperative DVT. A clot contraction assay, along with other hemostatic and hematologic tests, was performed 1–3 days before the surgery and on the 1st day and 5–7th days after the surgery. On the 1st postoperative day, clot contraction was significantly suppressed in patients who subsequently developed DVT, compared to the patients without DVT. Importantly, this difference was observed at least 5 days before DVT had developed. The weakening of contraction on the 1st postoperative day was more pronounced in the DVT patients with malignant versus benign brain tumors, atherosclerosis, hypertension, as well as in patients receiving steroids before and during the operation. These results indicate that impaired clot contraction in the postoperative period is associated with imminent DVT, suggesting that it is a prothrombotic risk factor and promotional mechanism. The clot contraction assay has a predictive value in assessing the threat of postoperative thrombosis in patients with benign and malignant brain tumors

    Changes in the parameters of thrombodynamics and blood clot contraction in patients with rheumatoid arthritis

    No full text
    © 2020 Ima-Press Publishing House. All rights reserved. Autoimmune diseases, including rheumatoid arthritis (RA), are risk factors for thrombotic events. Understanding the pathogenetic role of hemostatic changes in RA can assist in developing measures for prevention, prognosis, early diagnosis, and treatment of immune thromboses. Objective: to investigate the state of platelet and plasma hemostasis in patients with RA, as compared to other laboratory parameters and clinical manifestations of the disease. Subjects and methods. Hemostasis was investigated using two relatively new laboratory tests: thrombodynamics and kinetics of blood clot contraction (BCC). Examinations were made in 60 patients with RA and in 50 apparently healthy individuals of the control group. Results and discussion. In patients with RA, the parameters of thrombodynamics and BCC were found to be significantly different from the normal values. According to thrombodynamics, there was an increase in plasma clot growth rate, size, and density, which indicates chronic hypercoagulation. The rate and completeness of BCC were substantially reduced due to platelet dysfunction in patients with RA compared to healthy individuals. The changes in the parameters of thrombodynamics and BCC correlated with the laboratory signs of systemic inflammation and depended on the radiographic stage of the disease. Conclusion. The results of this investigation confirm that hemostatic disorders are present in RA and indicate the informative value of thrombodynamics and BCC tests as indicators of a pre-thrombotic state, including autoimmune pathology

    Strength and deformability of fibrin clots: Biomechanics, thermodynamics, and mechanisms of rupture

    No full text
    Fibrin is the major determinant of the mechanical stability and integrity of blood clots and thrombi. To explore the rupture of blood clots, emulating thrombus breakage, we stretched fibrin gels with single-edge cracks of varying size. Ultrastructural alterations of the fibrin network correlated with three regimes of stress vs. strain profiles: the weakly non-linear regime due to alignment of fibrin fibers; linear regime owing to further alignment and stretching of fibers; and the rupture regime for large deformations reaching the critical strain and stress, at which irreversible breakage of fibers ahead of the crack tip occurs. To interpret the stress-strain curves, we developed a new Fluctuating Spring model, which maps the fibrin alignment at the characteristic strain, network stretching with the Young modulus, and simultaneous cooperative rupture of coupled fibrin fibers into a theoretical framework to obtain the closed-form expressions for the strain-dependent stress profiles. Cracks render network rupture stochastic, and the free energy change for fiber deformation and rupture decreases with the crack length, making network rupture more spontaneous. By contrast, mechanical cooperativity due to the presence of inter-fiber contacts strengthens fibrin networks. The results obtained provide a fundamental understanding of blood clot breakage that underlies thrombotic embolization. Statement of significance: Fibrin, a naturally occurring biomaterial, is the major determinant of mechanical stability and integrity of blood clots and obstructive thrombi. We tested mechanically fibrin gels with single-edge cracks and followed ultrastructural alterations of the fibrin network. Rupture of fibrin gel involves initial alignment and elastic stretching of fibers followed by their eventual rupture for deformations reaching the critical level. To interpret the stress-strain curves, we developed Fluctuating Spring model, which showed that cracks render rupture of fibrin networks more spontaneous; yet, coupled fibrin fibers reinforce cracked fibrin networks. The results obtained provide fundamental understanding of blood clot breakage that underlies thrombotic embolization. Fluctuating Spring model can be applied to other protein networks with cracks and to interpret the stress-strain profiles
    corecore