230 research outputs found

    Hyperfine excitation of N2_2H+^+ by H2_2: Toward a revision of N2_2H+^+ abundance in cold molecular clouds

    Full text link
    The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N2_2H+^+ is of particular interest since it was shown to be a good probe of the physical conditions of cold molecular clouds. Thus, we have calculated hyperfine-structure resolved excitation rate coefficients of N2_2H+^+(X1ÎŁ+^1\Sigma^+) by H2(j=0)_2(j=0), the most abundant collisional partner in the cold interstellar medium. The calculations are based on a new potential energy surface, obtained from highly correlated {\it ab initio} calculations. State-to-state rate coefficients between the first hyperfine levels were calculated, for temperatures ranging from 5 K to 70 K. By comparison with previously published N2_2H+^+-He rate coefficients, we found significant differences which cannot be reproduced by a simple scaling relationship. As a first application, we also performed radiative transfer calculations, for physical conditions typical of cold molecular clouds. We found that the simulated line intensities significantly increase when using the new H2_2 rate coefficients, by comparison with the predictions based on the He rate coefficients. In particular, we revisited the modelling of the N2_2H+^+ emission in the LDN 183 core, using the new collisional data, and found that all three of the density, gas kinetic temperature and N2_2H+^+ abundance had to be revised

    The First Potential Energy Surfaces for the C₆Hˉ-H₂ and C₆Hˉ-He Collisional Systems and their Corresponding Inelastic Cross Sections

    Get PDF
    Molecular anions have recently been detected in the interstellar and circumstellar media. Accurate modeling of their abundance requires calculations of collisional data with the most abundant species that are usually He atoms and H2 molecules. In this paper, we focus on the collisional excitation of the first observed molecular anion, C6H-, by He and H2. Theoretical calculations of collisional cross sections rely generally on ab initio interaction potential energy surfaces (PESs). Hence, we present here the first PESs for the C6H--H2 and C6H--He van der Waals systems. The ab initio energy data for the surfaces were computed at the explicitly correlated coupled cluster with single, double, and scaled perturbative triple excitations level of theory. The method of interpolating moving least squares was used to construct 4D and 2D analytical PESs from these data. Both surfaces are characterized by deep wells and large anisotropies. Analytical models of the PESs were used in scattering calculations to obtain cross sections for low-lying rotational transitions. As could have been anticipated, important differences exist between the He and H2 cross sections. Conversely, no significant differences exist between the collisions of C6H- with the two species of H2 (para- and ortho-H2). We expect that these new data will help in accurately determining the abundance of the C6H- anions in space

    Inelastic Rate Coefficients for Collisions of C₆Hˉ with H₂ and He

    Get PDF
    The recent detection of anions in the interstellar medium has shown that they exist in a variety of astrophysical environments -- circumstellar envelopes, cold dense molecular clouds and star-forming regions. Both radiative and collisional processes contribute to molecular excitation and de-excitation in these regions so that the ‘local thermodynamic equilibrium’ approximation, where collisions cause the gas to behave thermally, is not generally valid. Therefore, along with radiative coefficients, collisional excitation rate coefficients are needed to accurately model the anionic emission from these environments. We focus on the calculation of state-to-state rate coefficients of the C6H- molecule in its ground vibrational state in collisions with para-H2, ortho-H2 and He using new potential energy surfaces. Dynamical calculations for the pure rotational excitation of C6H- were performed for the first 11 rotational levels (up to j1 = 10) using the close-coupling method, while the coupled-states approximation was used to extend the H2 rate coefficients to j1 = 30, where j1 is the angular momentum quantum number of C6H-. State-to-state rate coefficients were obtained for temperatures ranging from 2 to 100 K. The rate coefficients for H2 collisions for Δj1 = −1 transitions are of the order of 10-10 cm3 s-1, a factor of 2 to 3 greater than those of He. Propensity rules are discussed. The collisional excitation rate coefficients produced here impact astrophysical modelling since they are required for obtaining accurate C6H- level populations and line emission for regions that contain anions

    Quantum Behavior of Spin-Orbit Inelastic Scattering of C-Atoms by D2 at Low Energy

    Get PDF
    Fine-structure populations and collision–induced energy transfer in atoms are of interest for many fields, from combustion to astrophysics. In particular, neutral carbon atoms are known to play a role in interstellar media, either as probes of physical conditions (ground state 3Pj spin-orbit populations), or as cooling agent (collisional excitation followed by radiative decay). This work aims at investigating the spin-orbit excitation of atomic carbon in its ground electronic state due to collisions with molecular deuterium, an isotopic variant of H2, the most abundant molecule in the interstellar medium. Spin-orbit excitations of C(3Pj) by H2 or D2 are governed by non-adiabatic and spin-orbit couplings, which make the theoretical treatment challenging, since the Born-Oppenheimer approximation no longer holds. Inelastic collisional cross-sections were determined for the C(3P0) + D2 → C(3Pj) + D2 (with j = 1 and 2) excitation process. Experimental data were acquired in a crossed beam experiment at low collision energies, down to the excitation thresholds (at 16.42 and 43.41 cm−1, respectively). C-atoms were produced mainly in their ground spin-orbit state, 3P0, by dissociation of CO in a dielectric discharge through an Even-Lavie pulsed valve. The C-atom beam was crossed with a D2 beam from a second valve. The state-to-state cross-sections were derived from the C(3Pj) (j = 1 or 2) signal measured as a function of the beam crossing angle, i.e., as a function of the collision energy. The results show different quantum behaviors for excitation to C(3P1) or C(3P2) when C(3P0) collides with ortho-D2 or normal-D2. These experimental results are analyzed and discussed in the light of highly accurate quantum calculations. A good agreement between experimental and theoretical results is found. The present data are compared with those obtained for the C-He and C-H2 collisional systems to get new insights into the dynamics of collision induced spin-orbit excitation/relaxation of atomic carbon

    Mixed Quantum/Classical Calculations of Rotationally Inelastic Scattering in the CO + CO System: A Comparison With Fully Quantum Results

    Get PDF
    An updated version of the CO + CO potential energy surface from [R. Dawes, X. G. Wang and T. Carrington, J. Phys. Chem. A 2013, 117, 7612] is presented, that incorporates an improved treatment of the asymptotic behavior. It is found that this new surface is only slightly different from the other popular PES available for this system in the literature [G. W. M. Vissers, P. E. S. Wormer and A. Van Der Avoird, Phys. Chem. Chem. Phys. 2003, 5, 4767]. The differences are quantified by expanding both surfaces over a set of analytic functions and comparing the behavior of expansion coefficients along the molecule–molecule distance R. It is shown that all expansion coefficients behave similarly, except in the very high energy range at small R where the PES is repulsive. That difference has no effect on low collision-energy dynamics, which is explored via inelastic scattering calculations carried out using the MQCT program which implements the mixed quantum/classical theory for molecular energy exchange processes. The validity of MQCT predictions of state-to-state transition cross sections for CO + CO is also tested by comparison against full-quantum coupled-states calculations. In all cases MQCT gives reliable results, except at very low collision energy where the full-quantum calculations predict strong oscillations of state-to-state transition cross sections due to resonances. For strong transitions with large cross sections, the results of MQCT are reliable, especially at higher collision energy. For weaker transitions, and lower collision energies, the cross sections predicted by MQCT may be up to a factor of 2–3 different from those obtained by full-quantum calculations

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re

    SKIM, a candidate satellite mission exploring global ocean currents and waves

    Get PDF
    The Sea surface KInematics Multiscale monitoring (SKIM) satellite mission is designed to explore ocean surface current and waves. This includes tropical currents, notably the poorly known patterns of divergence and their impact on the ocean heat budget, and monitoring of the emerging Arctic up to 82.5°N. SKIM will also make unprecedented direct measurements of strong currents, from boundary currents to the Antarctic circumpolar current, and their interaction with ocean waves with expected impacts on air-sea fluxes and extreme waves. For the first time, SKIM will directly measure the ocean surface current vector from space. The main instrument on SKIM is a Ka-band conically scanning, multi-beam Doppler radar altimeter/wave scatterometer that includes a state-of-the-art nadir beam comparable to the Poseidon-4 instrument on Sentinel 6. The well proven Doppler pulse-pair technique will give a surface drift velocity representative of the top meter of the ocean, after subtracting a large wave-induced contribution. Horizontal velocity components will be obtained with an accuracy better than 7 cm/s for horizontal wavelengths larger than 80 km and time resolutions larger than 15 days, with a mean revisit time of 4 days for of 99% of the global oceans. This will provide unique and innovative measurements that will further our understanding of the transports in the upper ocean layer, permanently distributing heat, carbon, plankton, and plastics. SKIM will also benefit from co-located measurements of water vapor, rain rate, sea ice concentration, and wind vectors provided by the European operational satellite MetOp-SG(B), allowing many joint analyses. SKIM is one of the two candidate satellite missions under development for ESA Earth Explorer 9. The other candidate is the Far infrared Radiation Understanding and Monitoring (FORUM). The final selection will be announced by September 2019, for a launch in the coming decade

    Theoretical study of the T + D 2 and D + T 2 collisions in low-temperature hydrogen plasmas

    No full text
    International audienc
    • 

    corecore