540 research outputs found
Analysing the sustainability of the physical rehabilitation sector in seven fragile countries through multi-stakeholder involvement using a participatory consensus tool
Background: Sustainability is identified by nearly all organisations working in global health as one of the key indicators for project evaluation. Though typically recognised as an essential component for good project management to ensure positive impact, it is rarely applied effectively in practical terms and there are very few practical methods or tools to support implementation and monitoring of sustainable interventions. Further, despite efforts of stakeholders at all levels, the rehabilitation sector is not usually at the top of policy-makers’ agendas, which often results in limited to no funding and makes the task of building sustainability even more challenging at field level
Metal-based gels: Synthesis, properties, and applications
This review covers various aspects of recent developments on the design, the synthesis, the characterization of gels that: (i) are formed in the presence of metal ions (metallogels); (ii) are based on coordination complexes as gelators. Particular attention is devoted to systems that show recognition and sensing properties towards different analytes
The role of miRNA-133b and its target gene SIRT1 in FAP-derived desmoid tumor.
Signaling pathways have a key role in driving the uncontrolled development of familial adenomatous polyposis (FAP)- associated and sporadic desmoid tumors (DTs). The relationship between the Wnt/b-catenin signaling pathway and DTs has been extensively studied, but no reliable biomarkers able to detect their histological subtype have been identified for the accurate diagnosis. In this study we studied the differences in miRNA expression between sporadic (20 patients) and FAP-associated DTs (7 patients) using microarray confirmed by quantitative PCR (qPCR). The analysis showed 19 dysregulated miRNAs. Among them miR-133b levels were significantly lower in FAP-associated DT than in sporadic DT. Therefore, two mRNAs, associated to miR-133b and β-catenin expression, the SIRT1 and ELAVL1were analyzed. The qPCR analysis showed that SIRT1 mRNA levels were significantly up-regulated in FAP-associated DT than in sporadic DT, whereas no differences in ELAVL1 expression was observed between these two DT types. In addition, a negative correlation was observed between miR-133b and SIRT1 in FAP-associated DTs, but not in sporadic DTs. The miR-133b-SIRT1-β-catenin axis may represent a novel mechanism underlying progression of FAP-associated D
Potential Vorticity and Layer Thickness Variations in the Flow around Jupiter's Great Red Spot and White Oval BC
Layer thickness variations in Jupiter's atmosphere are investigated by treating potential vorticity as a conserved tracer. Starting with the horizontal velocity field measured from Voyager images, fluid trajectories around the Great Red Spot (GRS) and White Oval BC are calculated. The flow is assumed to be frictionless, adiabatic, hydrostatic, and steady in the reference frame of the vortex. Absolute vorticity is followed along each trajectory; its magnitude is assumed to vary directly as the thickness, which is defined as the mass per unit area between potential temperature surfaces. To the accuracy of the observations. the inferred thickness is a separable function of trajectory and latitude. The latitude dependence has positive curvature near the GRS and BC. The relative variations of thickness with respect to latitude are generally larger than the relative variations of Coriolis parameter with respect to latitude—the beta effect. The data are a useful diagnostic which will help differentiate between models, of Jovian vortices. The present analysis employs a quasi-geostrophic model in which a thin upper weather layer, which contains the vortex, is supported hydrostatically by a much deeper lower layer. In this model, the upper free surface does not contribute to the observed variation of thickness along trajectories. Such variations are due exclusively to bottom topography—flow of the deep lower layer relative to the vortex. The observation are used to infer the form of the deep zonal velocity profile vs. latitude. The magnitude of the profile depends on the unknown static stability. The principal result is the existence of horizontal shear in the deep layer zonal velocity profile, i.e., the lower layer is not in solid body rotation and does not act like a flat solid surface. In this respect the data support the hypothesis of Ingersoll and Cuong concerning motions in the deep layer. However at some latitudes the data violate Ingersoll and Cuong's criterion governing the compactness of the vortices. At these latitudes the topography allows standing Rossby waves (wakes) extending far downstream to the west. Observed wavelike features, the filamentary regions, are possibly formed by this mechanism
reactivity of the drug methimazole and its iodine adduct with elemental zinc
The reactivity of zinc complexes with N,S-donor molecules may be of relevance to the study of Zn-metalloproteins and -metalloenzymes. In this context, the zinc complex [Zn(MeImSH)2I2] was synthesised by the reaction of zinc powder with the 1:1 iodine adduct of the drug methimazole [(MeImSH)·I2]. The molecular structure of the complex, elucidated by X-ray diffraction analysis, showed a tetrahedral zinc(II) centre coordinated by two neutral methimazole units (through the sulfur atoms) and two iodides. From the reaction of MeImSH and Zn powder, the complex [Zn(MeImSH)(MeImS)2] (MeImS = deprotonated form of methimazole) was separated and characterised. An analysis of the crystal packing of the neutral complexes [Zn(MeImSH)2X2] (X = I, Br and Cl) and the ionic complex [Zn(MeImSH)3I]I showed that in all of the complexes the sulfur atom, in addition to binding to the metal centre, contributes to the formation of 1-D chains built via C(4)–H⋯S and N–H⋯X interactions in the neutral complexes, and via C(4)–H⋯S and N–CH3⋯S interactions in the ionic complex [Zn(MeImSH)3I]I. The deprotonation/protonation of the coordinated methimazole units can modulate the coordination environment at the Zn core. From the reaction of complex [Zn(MeImSH)3I]I with a strong non-coordinating organic base, we have shown that, as a consequence of the NH deprotonation of methimazole S-coordinated to zinc(II), the ligand coordination mode changes from S-monodentate to N,S-bridging. Correspondingly, in the complex [Zn(MeImSH)(MeImS)2], the MeImS that displays the N,S-bridging mode at zinc can be N-protonated and thereby changes to the S-monodentate coordination
The digital whomanities project. Best practices for digital pedagogy in the pandemic era
This paper aims to enter the ongoing debate about the critical issues of digital pedagogy through the presentation of Digital WHOmanities, a series of online conferences and workshops held at the University of Bologna. Distance learning has become one of the most discussed topics in educational institutions during the spread of Covid-19, revealing a discrepancy between the rapid development of technology and the ability of learning environments to adapt to this turn. In view of this ongoing debate, Digital WHOmanities tried to define the complex and multifaceted figure of the digital humanist and to provide a methodological framework that could foster further online academic initiatives. Specifically, the accurate organization of timing and contents and the adoption of synchronous and asynchronous approaches have highlighted the effectiveness of flexible digital didactics
dDAVP Downregulates the AQP3-Mediated Glycerol Transport via V1aR in Human Colon HCT8 Cells
Vasopressin (AVP) plays a key function in controlling body water and salt balance through the activation of the vasopressin receptors V1aR and V2R. Abnormal secretion of AVP can cause the syndrome of inappropriate antidiuresis that leads to hyponatremia, which is an electrolyte disorder often observed in the elderly hospitalized and oncologic patients. Beyond kidneys, the colonic epithelium modulates water and salt homeostasis. The water channel AQP3, expressed in villus epithelial cells is implicated in water absorption across human colonic surface cells. Here, the action of dDAVP, a stable vasopressin analog, was evaluated on the AQP3 expression and function using human colon HCT8 cells as an experimental model. Confocal and Western Blotting analysis revealed that HCT8 cells express both V1aR and V2R. Long-term (72 h) treatment with dDAVP reduced glycerol uptake and cell viability. These effects were prevented by SR49059, a synthetic antagonist of V1aR, but not by tolvaptan, a specific V2R antagonist. Of note, the SR49059 action was impaired by DFP00173, a selective inhibitor of AQP3. Interestingly, compared to the normal colonic mucosa, in the colon of patients with adenocarcinoma, the expression of V1aR was significantly decreased. These findings were confirmed by gene expression analysis with RNA-Seq data. Overall, data suggest that dDAVP, through the V1aR dependent pathway, reduces AQP3 mediated glycerol uptake, a process that is reversed in adenocarcinoma, suggesting that the AVP-dependent AQP3 pathway may represent a novel target in colon diseases associated with abnormal cell growth
Potentiometric Sensing of Nonsteroidal Painkillers by Acyclic Squaramide Ionophores
We report here a small library of a new type of acyclic squaramide receptors (L1-L5) as selective ionophores for the detection of ketoprofen and naproxen anions (KF- and NS-, respectively) in aqueous media. 1H NMR binding studies show a high affinity of these squaramide receptors toward KF- and NS-, suggesting the formation of H-bonds between the two guests and the receptors through indole and −NH groups. Compounds L1-L5 have been tested as ionophores for the detection of KF- and NS- inside solvent PVC-based polymeric membranes. The optimal membrane compositions were established through the careful variation of the ligand/tridodecylmethylammonium chloride (TDMACl) anion-exchanger ratio. All of the tested acyclic squaramide receptors L1-L5 have high affinity toward KF- and NS- and anti-Hofmeister selectivity, with L4 and L5 showing the highest sensitivity and selectivity to NS-. The utility of the developed sensors for a high precision detection of KF- in pharmaceutical compositions with low relative errors of analysis (RSD, 0.99-1.4%) and recoveries, R%, in the range 95.1-111.8% has been demonstrated. Additionally, the chemometric approach has been involved to effectively discriminate between the structurally very similar KF- and NS-, and the possibility of detecting these analytes at concentrations as low as 0.07 μM with R2 of 0.947 and at 0.15 μM with R2 of 0.919 for NS- and KF-, respectively, was shown
How well can one resolve the state space of a chaotic map?
All physical systems are affected by some noise that limits the resolution
that can be attained in partitioning their state space. For chaotic, locally
hyperbolic flows, this resolution depends on the interplay of the local
stretching/contraction and the smearing due to noise. We propose to determine
the `finest attainable' partition for a given hyperbolic dynamical system and a
given weak additive white noise, by computing the local eigenfunctions of the
adjoint Fokker-Planck operator along each periodic point, and using overlaps of
their widths as the criterion for an optimal partition. The Fokker-Planck
evolution is then represented by a finite transition graph, whose spectral
determinant yields time averages of dynamical observables. Numerical tests of
such `optimal partition' of a one-dimensional repeller support our hypothesis.Comment: 4 pages, 3 postscript figures, uses revtex4; changed conten
- …