7 research outputs found

    Exploring Molecular Simulations of a Plausible Prebiotic Reduced Phospholipid Using Hyperchem Software

    Get PDF
    How the first cells emerged from the primordial milieu is one of the great questions in science. Biomolecular emergence scenarios abound in the literature, but the lack of bioaccessible phosphate and molecular oxygen on the primordial Earth has posed formidable challenges for deducing emergence pathways. One idea gaining wide acceptance invokes delivery of the phosphide mineral schreibersite ((Fe,Ni)3P) to Earth via meteorite impacts ca. 4.2 billion years ago, whereupon they were corroded to reduced phosphorous oxyacids and phosphonates in primordial aquatic environments. We previously proposed that these reduced phosphorus forms could readily combine with putative geochemical species in shallow mineral-rich alkaline hydrothermal systems to form reduced phospholipid analogs of contemporary phosphate-based phospholipids (Fitch, N.W., K.L. Even, L.J. Leinen and M.O. Gaylor. 2016. Plausible prebiotic assembly of a primitive reduced phospholipid from meteoritic phosphorus on the primordial earth. Proceedings of the South Dakota Academy of. Science 95:176.). Lacking resources to empirically validate this idea, we explored “water box” simulations of the proposed phospholipid structure using the HyperChem software package. Simulation results showed the hydrophobic tails migrating away from water molecules, while hydrophilic heads migrated towards them, resulting in quasistacking behaviors consistent with those of known amphiphiles in water. Inspired by these results, we are now investigating more complex primordial simulation scenarios

    Characterizing the Volatilome of Land-disposed Sewage Sludge Under Seasonal Temperature Regimes

    Get PDF
    About eight million dry tons of sewage sludge waste is generated in the US annually, with more than half of that now land-disposed on agricultural and forested lands. Though containing essential plant nutrients, sludge also harbors complex mixtures of volatile organic compounds (VOCs) that result in toxic emissions therefrom. While ecotoxic impacts to sludged ecosystems are a primary concern, the stifling emissions are most obvious to and disconcerting for the public, which has led to increasing concerns for the safety of this practice. The large-scale disposal of sludge in the temperate rainforests of the Puget Sound Watershed has resulted in acute toxicity to macrobiota, and despite escalating concerns for detrimental impacts, little is known about the total VOC inventories, or “volatilomes,” of these complex wastes. To address this knowledge gap, we characterized VOC emissions from forest-disposed sewage sludge over a range of seasonal temperature regimes. We also incubated sludge samples at the more extreme 100 o C to assess the “complete volatilome.” After 1-hr incubations in gastight vials, VOCs accumulated in the headspace were sampled with a gastight syringe and analyzed with gas chromatography-mass spectrometry to generate distinct chemical fingerprints of sludge sample volatilomes over the range of temperatures. Total integrated chromatographic peak areas increased with temperature, indicating increased VOC production. Sludge volatilomes were dominated by a multitude of aliphatics and aromatics, with comparatively lesser emissions of alcohols, esters, aldehydes, terpenes, and nitrogen-, sulfur-, and halogen-containing compounds

    Profiling Volatile Constituents of Homemade Preserved Foods Prepared in Early 1950s South Dakota (USA) Using Solid-Phase Microextraction (SPME) with Gas Chromatography–Mass Spectrometry (GC-MS) Determination

    Get PDF
    An essential dimension of food tasting (i.e., flavor) is olfactory stimulation by volatile organic compounds (VOCs) emitted therefrom. Here, we developed a novel analytical method based on solid-phase microextraction (SPME) sampling in argon-filled gas sampling bags with direct gas chromatography⁻mass spectrometry (GC-MS) determination to profile the volatile constituents of 31 homemade preserves prepared in South Dakota (USA) during the period 1950⁻1953. Volatile profiles varied considerably, but generally decreased in detected compounds, complexity, and intensity over three successive 2-h SPME sampling periods. Volatile profiles were generally predominated by aldehydes, alcohols, esters, ketones, and organic acids, with terpenoids constituting much of the pickled cucumber volatiles. Bisphenol-A (BPA) was also serendipitously detected and then quantified in 29 samples, at levels ranging from 3.4 to 19.2 μg/kg, within the range of levels known to induce endocrine disruption effects. Absence of BPA in two samples was attributed to their lids lacking plastic liners. As the timing of their preparation coincides with the beginning of BPA incorporation into consumer products, these jars may be some of the first BPA-containing products in the USA. To the best of our knowledge, this is the first effort to characterize BPA in and volatile profiles of rare historical foods with SPME
    corecore