639 research outputs found
Middle Pliocene hominin diversity : Australopithecus deyiremeda and Kenyanthropus platyops
Geometric morphometric shape analyses are used to compare the maxillae of the Kenyanthropus platyops holotype KNM-WT 40000, the Australopithecus deyiremeda holotype BRT-VP-3/1 and other australopiths. The main aim is to explore the relationship between these two specimens and contemporary Australopithecus afarensis. Five landmarks placed on lateral views of the maxillae quantify key aspects of the morphology. Generalized Procrustes analyses and principal component analyses of the resulting shape coordinates were performed. The magnitudes of differences in shape and their significances were assessed using Procrustes and Mahalanobis’ distances, respectively. Both KNM-WT 40000 and BRT-VP-3/1 show statistically significant differences in maxillary shape from A. afarensis, but do so in dissimilar ways. Moreover, the former differs more from A. afarensis than the latter. KNM-WT 40000 has a more anteriorly positioned zygomatic process with a transversely flat, and more orthognathic subnasal clivus. BRT-VP-3/1 has a more inferiorly positioned zygomatic process, a slightly retracted dental arcade, but without shortening of the anterior maxilla. These findings are consistent with previous conclusions that the two fossils should be attributed to separate species, rather than to A. afarensis, and with the presence of three contemporary hominin species in the Middle Pliocene of eastern Africa
Hominin dental remains from the Pliocene localities at Lomekwi, Kenya (1982-2009)
Increasing evidence for both taxonomic diversity and early stone manufacture during the Pliocene highlight the importance of the hominin fossil record from this epoch in eastern Africa. Here, we describe dental remains from Lomekwi (West Turkana, Kenya), which date from between 3.2 and 3.5 Ma. The sample was collected between 1982 and 2009 and includes five gnathic specimens and a total of 67 teeth (mostly isolated permanent postcanine teeth). Standard linear dimensions indicate that, while the Lomekwi teeth are relatively small, there is broad overlap in size with contemporary Australopithecus afarensis and Australopithecus deyiremeda specimens at most tooth positions. However, some dental characters differentiate this sample from these species including: a relatively large P4 and M3 compared with the M1, a high incidence of well-developed protostylids and specific accessory molar cuspules. Due to a lack of well-preserved tooth crowns (and the complete absence of mandibular teeth) in the holotype and paratype of Kenyanthropus platyops, and limited comparable gnathic morphology in the new specimens, it cannot be determined whether these Lomekwi specimens should be attributed to this species. Attribution of these specimens is further complicated by a lack of certainty about position along the tooth row of many of the molar specimens. More comprehensive shape analyses of the external and internal morphology of these specimens, and additional fossil finds, would facilitate the taxonomic attribution of specimens in this taxonomically diverse period of human evolution
Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.
Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints
The acheulean handaxe : More like a bird's song than a beatles' tune?
© 2016 Wiley Periodicals, Inc. KV is supported by the Netherlands Organization for Scientific Research. MC is supported by the Canada Research Chairs Program, the Social Sciences and Humanities Research of Canada, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, and Simon Fraser UniversityPeer reviewedPublisher PD
A New Horned Crocodile from the Plio-Pleistocene Hominid Sites at Olduvai Gorge, Tanzania
BACKGROUND: The fossil record reveals surprising crocodile diversity in the Neogene of Africa, but relationships with their living relatives and the biogeographic origins of the modern African crocodylian fauna are poorly understood. A Plio-Pleistocene crocodile from Olduvai Gorge, Tanzania, represents a new extinct species and shows that high crocodylian diversity in Africa persisted after the Miocene. It had prominent triangular "horns" over the ears and a relatively deep snout, these resemble those of the recently extinct Malagasy crocodile Voay robustus, but the new species lacks features found among osteolaemines and shares derived similarities with living species of Crocodylus. METHODOLOGY/PRINCIPAL FINDINGS: The holotype consists of a partial skull and skeleton and was collected on the surface between two tuffs dated to approximately 1.84 million years (Ma), in the same interval near the type localities for the hominids Homo habilis and Australopithecus boisei. It was compared with previously-collected material from Olduvai Gorge referable to the same species. Phylogenetic analysis places the new form within or adjacent to crown Crocodylus. CONCLUSIONS/SIGNIFICANCE: The new crocodile species was the largest predator encountered by our ancestors at Olduvai Gorge, as indicated by hominid specimens preserving crocodile bite marks from these sites. The new species also reinforces the emerging view of high crocodylian diversity throughout the Neogene, and it represents one of the few extinct species referable to crown genus Crocodylus
Climate change challenges, plant science solutions
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community
Livestock production: recent trends, future prospects
The livestock sector globally is highly dynamic. In developing countries, it is evolving in response to rapidly increasing demand for livestock products. In developed countries, demand for livestock products is stagnating, while many production systems are increasing their efficiency and environmental sustainability. Historical changes in the demand for livestock products have been largely driven by human population growth, income growth and urbanization and the production response in different livestock systems has been associated with science and technology as well as increases in animal numbers. In the future, production will increasingly be affected by competition for natural resources, particularly land and water, competition between food and feed and by the need to operate in a carbon-constrained economy. Developments in breeding, nutrition and animal health will continue to contribute to increasing potential production and further efficiency and genetic gains. Livestock production is likely to be increasingly affected by carbon constraints and environmental and animal welfare legislation. Demand for livestock products in the future could be heavily moderated by socio-economic factors such as human health concerns and changing socio-cultural values. There is considerable uncertainty as to how these factors will play out in different regions of the world in the coming decades
Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity
Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use1. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments1, 2 and global crop models3 to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[0;47]%–27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4–17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities
- …