518 research outputs found

    A reevaluation of the role of the unfolded protein response in islet dysfunction: maladaptation or a failure to adapt?

    Get PDF
    Endoplasmic reticulum (ER) stress caused by perturbations in ER homeostasis activates an adaptive response termed the unfolded protein response (UPR) whose function is to resolve ER stress. If unsuccessful, the UPR initiates a proapoptotic program to eliminate the malfunctioning cells from the organism. It is the activation of this proapoptotic UPR in pancreatic β-cells that has been implicated in the onset of type 2 diabetes and thus, in this context, is considered a maladaptive response. However, there is growing evidence that β-cell death in type 2 diabetes may not be caused by a maladaptive UPR but by the inhibition of the adaptive UPR. In this review, we discuss the evidence for a role of the UPR in β-cell dysfunction and death in the development of type 2 diabetes and ask the following question: Is β-cell dysfunction the result of a maladaptive UPR or a failure of the UPR to adequately adapt? The answer to this question is critically important in defining potential therapeutic strategies for the treatment and prevention of type 2 diabetes. In addition, we discuss the potential role of the adaptive UPR in staving off type 2 diabetes by enhancing β-cell mass and function in response to insulin resistance

    Contribution of Intronic miR-338-3p and Its Hosting Gene AATK to Compensatory β-Cell Mass Expansion.

    Get PDF
    The elucidation of the mechanisms directing β-cell mass regeneration and maintenance is of interest, because the deficit of β-cell mass contributes to diabetes onset and progression. We previously found that the level of the microRNA (miRNA) miR-338-3p is decreased in pancreatic islets from rodent models displaying insulin resistance and compensatory β-cell mass expansion, including pregnant rats, diet-induced obese mice, and db/db mice. Transfection of rat islet cells with oligonucleotides that specifically block miR-338-3p activity increased the fraction of proliferating β-cells in vitro and promoted survival under proapoptotic conditions without affecting the capacity of β-cells to release insulin in response to glucose. Here, we evaluated the role of miR-338-3p in vivo by injecting mice with an adeno-associated viral vector permitting specific sequestration of this miRNA in β-cells. We found that the adeno-associated viral construct increased the fraction of proliferating β-cells confirming the data obtained in vitro. miR-338-3p is generated from an intron of the gene coding for apoptosis-associated tyrosine kinase (AATK). Similarly to miR-338-3p, we found that AATK is down-regulated in rat and human islets and INS832/13 β-cells in the presence of the cAMP-raising agents exendin-4, estradiol, and a G-protein-coupled Receptor 30 agonist. Moreover, AATK expression is reduced in islets of insulin resistant animal models and selective silencing of AATK in INS832/13 cells by RNA interference promoted β-cell proliferation. The results point to a coordinated reduction of miR-338-3p and AATK under insulin resistance conditions and provide evidence for a cooperative action of the miRNA and its hosting gene in compensatory β-cell mass expansion

    Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes.

    Get PDF
    AIMS/HYPOTHESIS: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. METHODS: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. RESULTS: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. CONCLUSIONS/INTERPRETATION: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNAs

    Circular RNAs as novel regulators of β-cell functions in normal and disease conditions.

    Get PDF
    There is strong evidence for an involvement of different classes of non-coding RNAs, including microRNAs and long non-coding RNAs, in the regulation of β-cell activities and in diabetes development. Circular RNAs were recently discovered to constitute a substantial fraction of the mammalian transcriptome but the contribution of these non-coding RNAs in physiological and disease processes remains largely unknown. The goal of this study was to identify the circular RNAs expressed in pancreatic islets and to elucidate their possible role in the control of β-cells functions. We used a microarray approach to identify circular RNAs expressed in human islets and searched their orthologues in RNA sequencing data from mouse islets. We then measured the level of four selected circular RNAs in the islets of different Type 1 and Type 2 diabetes models and analyzed the role of these circular transcripts in the regulation of insulin secretion, β-cell proliferation, and apoptosis. We identified thousands of circular RNAs expressed in human pancreatic islets, 497 of which were conserved in mouse islets. The level of two of these circular transcripts, circHIPK3 and ciRS-7/CDR1as, was found to be reduced in the islets of diabetic db/db mice. Mimicking this decrease in the islets of wild type animals resulted in impaired insulin secretion, reduced β-cell proliferation, and survival. ciRS-7/CDR1as has been previously proposed to function by blocking miR-7. Transcriptomic analysis revealed that circHIPK3 acts by sequestering a group of microRNAs, including miR-124-3p and miR-338-3p, and by regulating the expression of key β-cell genes, such as Slc2a2, Akt1, and Mtpn. Our findings point to circular RNAs as novel regulators of β-cell activities and suggest an involvement of this novel class of non-coding RNAs in β-cell dysfunction under diabetic conditions

    Glucose-Induced O2 Consumption Activates Hypoxia Inducible Factors 1 and 2 in Rat Insulin-Secreting Pancreatic Beta-Cells

    Get PDF
    Glucose increases the expression of glycolytic enzymes and other hypoxia-response genes in pancreatic beta-cells. Here, we tested whether this effect results from the activation of Hypoxia-Inducible-factors (HIF) 1 and 2 in a hypoxia-dependent manner

    Many Commercially Available Antibodies for Detection of CHOP Expression as a Marker of Endoplasmic Reticulum Stress Fail Specificity Evaluation

    Get PDF
    Endoplasmic reticulum (ER) stress contributes to beta cell death in type 2 diabetes (T2DM). ER stress is characterized by increased level of ER stress markers such as C/EBP homologous protein (CHOP). Activation of CHOP leads to its translocation into the nucleus, where it induces cell death. We previously reported nuclear CHOP in pancreatic sections from T2DM, but not T1DM, and in human islet amyloid polypeptide (IAPP) transgenic rodent pancreatic sections. These studies underscore the importance of studying nuclear CHOP. We have observed inconsistency in the detection of CHOP antibodies reported in the literature and also in our own experiments. To investigate the specificity of CHOP antibodies, we first induced ER stress by tunicamycin in rat insulinoma (INS) cells and prepared nuclear and cytoplasmic fractions. Then we examined CHOP expression by Western blotting and immunocytochemistry using seven commercially available CHOP antibodies in INS cells and human IAPP (h-IAPP) transgenic rodent pancreatic tissue. These studies show that three commercially available CHOP antibodies out of seven tested were non-specific. In conclusion, we give recommendations for CHOP antibody selection and methods to verify CHOP antibody specificity. Also, we propose that the authors report the catalog and lot numbers of the CHOP antibodies used

    Role of PKCΖ translocation in the development of type 2 diabetes in rats following continuous glucose infusion

    Full text link
    Aim We investigated the molecular mechanisms of hyperglycaemia-induced insulin resistance and type 2 diabetes in rats receiving a continuous glucose infusion (GI). Methods Female Wistar rats were infused with either 2.8 mol/L glucose or saline (2 mL/h) for durations varying from 0 to 15 days. Blood samples were analysed daily to determine glucose and insulin dynamics. Subsets of animals were sacrificed and solues muscles were extracted for determination of protein expression, subcellular location, and activities of insulin-signalling proteins. Results Rats accommodated this systemic glucose oversupply and developed insulin resistance on day 5 (normoglycaemia/hyperinsulinaemia) and type 2 diabetes on day 15 (hyperglycaemia/normoinsulinaemia). The effect of GI on protein kinase CΖ (PKCΖ) activity was independent of changes in phosphatidylinositol 3-kinase activity, and occurred in parallel with an increase in PDK1 activity. Activated PKCΖ was mainly located in the cytosol after 5 days of GI that was coincident with the translocation of GLUT4 to the plasma membrane, and normoglycaemia. After 15 days of GI, PKCΖ translocated from the cytosol to the plasma membrane with a concomitant decrease in PDK1 activity. This caused an increase in the association between PKCΖ and PKB and a decrease in PDK1–PKB reactions at the plasma membrane, leading to reduced PKB activity. The activity of PKCΖ per se was also compromised. The PKCΖ and PKB activity reduction and the blunted insulin-stimulated GLUT4 translocation eventually led to hyperglycaemia and diabetes. Conclusion Translocation of PKCΖ may play a central role in the development of type 2 diabetes. Copyright © 2009 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64921/1/1056_ftp.pd

    Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes

    Get PDF
    Aims/hypothesis: MicroRNAs are key regulators of gene expression involved in health and disease. The goal of our study was to investigate the global changes in beta cell microRNA expression occurring in two models of obesity-associated type 2 diabetes and to assess their potential contribution to the development of the disease. Methods: MicroRNA profiling of pancreatic islets isolated from prediabetic and diabetic db/db mice and from mice fed a high-fat diet was performed by microarray. The functional impact of the changes in microRNA expression was assessed by reproducing them in vitro in primary rat and human beta cells. Results: MicroRNAs differentially expressed in both models of obesity-associated type 2 diabetes fall into two distinct categories. A group including miR-132, miR-184 and miR-338-3p displays expression changes occurring long before the onset of diabetes. Functional studies indicate that these expression changes have positive effects on beta cell activities and mass. In contrast, modifications in the levels of miR-34a, miR-146a, miR-199a-3p, miR-203, miR-210 and miR-383 primarily occur in diabetic mice and result in increased beta cell apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the levels of particular microRNAs to allow sustained beta cell function, and that additional microRNA deregulation negatively impacting on insulin-secreting cells may cause beta cell demise and diabetes manifestation. Conclusions/interpretation: We propose that maintenance of blood glucose homeostasis or progression toward glucose intolerance and type 2 diabetes may be determined by the balance between expression changes of particular microRNA

    Gene Expression Profiles of Beta-Cell Enriched Tissue Obtained by Laser Capture Microdissection from Subjects with Type 2 Diabetes

    Get PDF
    Background: Changes in gene expression in pancreatic beta-cells from type 2 diabetes (T2D) should provide insights into their abnormal insulin secretion and turnover. Methodology/Principal Findings: Frozen sections were obtained from cadaver pancreases of 10 control and 10 T2D human subjects. Beta-cell enriched samples were obtained by laser capture microdissection (LCM). RNA was extracted, amplified and subjected to microarray analysis. Further analysis was performed with DNA-Chip Analyzer (dChip) and Gene Set Enrichment Analysis (GSEA) software. There were changes in expression of genes linked to glucotoxicity. Evidence of oxidative stress was provided by upregulation of several metallothionein genes. There were few changes in the major genes associated with cell cycle, apoptosis or endoplasmic reticulum stress. There was differential expression of genes associated with pancreatic regeneration, most notably upregulation of members of the regenerating islet gene (REG) family and metalloproteinase 7 (MMP7). Some of the genes found in GWAS studies to be related to T2D were also found to be differentially expressed. IGF2BP2, TSPAN8, and HNF1B (TCF2) were upregulated while JAZF1 and SLC30A8 were downregulated. Conclusions/Significance: This study made possible by LCM has identified many novel changes in gene expression tha
    corecore