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ABSTRACT 
 

 
 

Aims/hypothesis: MicroRNAs are key regulators of gene expression involved in health and 

disease. The goal of our study was to investigate the global changes in beta cell microRNA 

expression occurring in two obesity-associated type 2 diabetes  models and to assess their 

potential contribution to the development of the disease. 

Methods: MicroRNA profiling of pancreatic islets isolated from  pre-diabetic  and  diabetic 

db/db mice and from mice fed a high fat diet was performed by microarray. The functional 

impact of the changes in microRNA expression was assessed by reproducing them in vitro in 

primary rat and human beta cells. 

Results: MicroRNAs differentially expressed in both models of obesity-associated type 2 

diabetes fall in two distinct categories. A group including miR-132, miR-184 and miR-338- 

3p, displays expression changes occurring long before the onset of  diabetes.  Functional 

studies indicate that these expression changes have positive effects on beta cell activities and 

mass. In contrast, modifications in the level of miR-34a, miR-146a, miR-199a-3p, miR-203, 

miR-210, and miR-383 primarily occur in  diabetic mice, and result in increased beta cell 

apoptosis. These results indicate that obesity and insulin resistance trigger adaptations in the 

level of particular microRNAs to allow sustained beta cell function, and that additional 

microRNA deregulation negatively impacting on insulin-secreting cells may be causative of 

beta cell demise and diabetes manifestation. 

Conclusions/interpretation: We propose that maintenance of blood glucose homeostasis or 

progression toward glucose intolerance and type 2 diabetes may be determined by the balance 

between expression changes of particular microRNAs. 

 

Keywords: Apoptosis, Beta cell, Diabetes, High fat diet, Insulin resistance, Pancreatic islet, 

microRNA, Obesity, Secretion 
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Abbreviations: 
 

 
 

FoxM1 forkhead box M1 
 

GSK-3β glycogen synthase kinase 3 beta 
 

HFD high fat diet 
 

MAFA v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A 

miRNA microRNA 

mTOR mammalian target of rapamycin 
 

Pdx1 pancreatic and duodenal homeobox 1 
 

PRL prolactin 
 
 
 

INTRODUCTION 
 

Type 2 diabetes is characterized by insulin resistance of target tissues and insufficient 

insulin secretion from pancreatic beta cells to cover the organism needs. Insulin resistance is 

normally compensated by expansion of the beta cell mass and a rise in the insulin secretory 

activity [1]. However, in predisposed individuals this compensatory process fails resulting in 

beta cell dysfunction, eventually accompanied by reduction of the beta cell mass and type 2 

diabetes manifestation [2]. A better knowledge of the molecular mechanisms underlying beta 

cell adaptation and failure will be instrumental for designing new strategies to prevent or treat 

this disease. 

MicroRNAs (miRNAs) are small non-coding RNAs playing central roles in a number 

of physiological and pathological processes [3]. Several studies have  shown that miRNAs 

participate in the control of beta cell differentiation, function and mass. These non-coding 

RNAs regulate insulin production by directly or indirectly affecting the expression of key 

transcription factors and they contribute to fine-tuning of hormone release by modulating the 

level of important components of the beta cell secretory machinery [4]. The expression of 

several miRNAs is affected by prolonged exposure to elevated concentrations of glucose, free 
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fatty acids and proinflammatory cytokines [4]. Moreover, alterations in the level of many islet 

miRNAs have been reported in different models of diabetes [5-9]. However, the functional 

impact of these miRNA expression changes and their potential role in the development of 

diabetes were in most cases not explored. 

In this study, we analyzed the global variations in islet miRNA expression in pre- 

diabetic and diabetic db/db mice [10] and in high fat diet (HFD) fed mice [11]. Differentially 

expressed miRNAs in these models of obesity-associated diabetes were systematically 

investigated for their effects on rat and human beta cell function and for their impact on cell 

survival upon chronic exposure to pro-apoptotic conditions. The results indicate that specific 

changes in islet miRNA expression in pre-diabetic and diabetic states reflect the coexistence 

of adaptive processes elicited to compensate insulin resistance and of pathological reactions 

promoting beta cell failure. The balance between these opposing phenomena is likely to 

determine progression from  normoglycaemia to hyperglycemic states and manifestation  of 

diabetes. 
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METHODS 
 

Material. TNFα and INFγ were from R&D Systems (Minneapolis, MN). IL-1β, prolactin, 

exendin-4 and palmitate were purchased from Sigma-Aldrich (St. Louis, MO). 

Animals. Prediabetic (6 weeks old) and diabetic (14-20 weeks old) C57BL/KsJ db/db mice 
 

and  age-matched  C57BL/KsJ  control  animals  were  obtained  from  the  Garvan  Institute 

breeding colonies (Australia) [10]. Five-week-old male C57BL/6 mice were purchased from 

Charles River Laboratories (St-Constant, QC, Canada) and fed normal or high fat diet (Bio- 

Ser Diet #F3282, Frenchtown, NJ, 60% (wt/wt) fat by energy) during 8 weeks as described 

[11]. Male Wistar rats were purchased from Charles River Laboratories (L’Arbresle, France). 

All animal procedures were performed in accordance with NIH guidelines and were approved 

by the respective Australian, Canadian and Swiss Research Councils and Veterinary offices. 

Microarray  profiling.  Total  RNA  was  isolated  with  the  mirVana  RNA  isolation  kit 

(Ambion,  Austin,  TX) from islets of C57BL/KsJ  db/db mice  or of  control  animals. Total 

RNA from islets of C57BL/6 mice fed a normal diet or a high fat diet was isolated with the 

miRNeasy  kit  (Qiagen,  Hombrechtikon,  Switzerland).  Global  miRNA  expression  profiling 

was carried out at the Genomic Technologies Facility of the University of Lausanne using the 

Agilent  Technologies  miRNA  Gene  Microarrays.  Microarrays  included  probes  for  mouse 

miRNAs listed on http://www.mirbase.org/ (Release 14, 2009). 

Isolation and culture of dissociated islet cells. Pancreatic islets were isolated as described 

[12] by collagenase digestion followed by purification on a Histopaque (Sigma-Aldrich, St. 

Louis, MO) density gradient. The islets were first cultured overnight in RPMI 1640 Glutamax 

medium (Invitrogen, Carlsbad, CA) supplemented with 10% (vol/vol) fetal calf serum (FCS, 

Amimed, BioConcept AG, Allschwill, Switzerland), 50 U/ml penicillin, 50 µg/ml 

streptomycin, 1 mmol/l NaPyruvate and 250 µmol/l HEPES and then dissociated by 

incubation  with  trypsin  (5mg/ml  at  37°C  during  4-5  min).  Human  pancreatic  islets  were 
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obtained from the Cell Isolation and Transplantation Center (University of Geneva), through 

the ECIT “Islets for Research” distribution program sponsored by the Juvenile Diabetes 

Research Foundation. The use of human islets was approved by  the  Geneva  institutional 

ethical committee. Dissociated human islet cells prepared using the  procedure  described 

above were cultured in CMRL medium (Invitrogen, Carlsbad, CA) supplemented with 10% 

(vol/vol) FCS, 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mmol/l glutamine, and 250 

µmol/l HEPES. Detailed information about the human islet preparations used in this study is 
 

presented in ESM Table 1. 
 

MIN6B1 cell culture. The murine insulin-secreting cell line MIN6B1 [13] was cultured at a 

density of 1.5 x 105 cells/cm2 in DMEM-Glutamax medium (Invitrogen, Carlsbad, CA) 

supplemented with 15% (vol/vol) FCS, 50 U/ml penicillin, 50 µg/ml streptomycin, and 70 

µmol/l ß-mercaptoethanol. 
 

Transfection and modulation of miRNA levels. MIN6B1 and dissociated rat or human islet 

cells were transfected with Lipofectamine 2000TM (Invitrogen, Carlsbad, CA) with RNA 

oligonucleotide   duplexes   (Eurogentec,   Seraing,   Belgium)   corresponding   to   the   mature 

miRNA sequence (overexpression) or with single-stranded miScript miRNA Inhibitors 

(Qiagen, Hombrechtikon, Switzerland) that specifically block endogenous miRNAs [14]. A 

custom-designed siRNA duplex directed against green fluorescent protein (sense 5’- 

GACGUAAACGGCCACAAGUUC-3’    and    antisense    5’-ACUUGUGGCCGUUUACGU 

CGC-3’) and the miScript miRNA reference inhibitor (Qiagen, Hombrechtikon, Switzerland) 

were used as negative controls for miRNA overexpression and down-regulation, respectively. 

Measurement of miRNA and mRNA expression. Mature miRNA expression was assessed 

with the miRCURY LNATM Universal RT microRNA PCR kit (Exiqon, Vedbaek, Denmark). 

Measurements of the level of putative target mRNAs were performed by conventional reverse 

transcription  (Promega,  Dübendorf,  Switzerland)  followed  by  quantitative  PCR  (Biorad, 
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Reinach, Switzerland) with custom-designed primers (Microsynth, Balgach, Switzerland) that 

are available upon request. MiRNA expression was normalized to the level of U6 or miR-7 

(an islet-specific miRNA used as internal control) while mRNA expression was normalized to 

18S. 

Insulin secretion. Two days after transfection, MIN6B1 or dissociated rat islet cells were pre- 

incubated during 30 min at 37°C in KREBS buffer (127 mmol/l NaCl, 4.7  mmol/l  KCl, 

1mmol/l CaCl2, 1.2 mmol/l KH2PO4, 1.2 mmol/l MgSO4, 5 mmol/l NaHCO3, 0.1 % (wt/vol) 

BSA, 25 mmol/l HEPES, pH 7.4) containing 2 mmol/l glucose. The pre-incubation medium 

was discarded and the cells incubated for 45 min in the same buffer (basal condition). After 

gathering the supernatants, the cells were incubated for 45 min in KREBS buffer containing 

20 mmol/l glucose (stimulatory condition). The incubation medium was collected and total 

cellular insulin contents recovered in EtOH acid (75 % (vol/vol) EtOH, 0.55 % (vol/vol) 

HCl).  The  amount  of  insulin  in  the  samples  was  determined  using  an  insulin  enzyme 

immunoassay kit (SPI-Bio, Bertin Pharma, Montigny le Bretonneux, France). 
 

Cell death assessment. Transfected MIN6B1, rat or human dissociated islet cells were 

incubated with 1 µg/ml Hoechst 33342 (Invitrogen, Carlsbad, CA) during 1 min. The fraction 

of  cells  (at  least  1  x  103   per  condition)  displaying  pycnotic  nuclei  was  scored  under 

fluorescence microscopy (AxioCam MRc5, Zeiss). Apoptosis was triggered by exposing the 
 

cells during 24h to cytokines (30 ng/ml INFγ, 10 ng/ml TNFα and 0.1 ng/ml IL-1β) or during 

48h to medium (5 % (vol/vol) FCS) supplemented with 0.5 mmol/l palmitate bound to 0.5 % 

(wt/vol) BSA [15]. 

Proliferation assay. Transfected MIN6B1 or dissociated islet cells cultured on poly-L-lysine 

coated glass coverslips were fixed with ice-cold methanol and permeabilized with 0.5% 

(wt/vol) saponin (Sigma-Aldrich, St. Louis, MO). The coverslips were incubated with 

antibodies  against  Ki67  (1:500)  (Abcam,  Cambridge,  UK)  and  insulin  (1:500)  (Millipore, 
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Zug, Switzerland) and then with anti-rabbit Alexa-Fluor-488 and anti-mouse Alexa-Fluor-555 

antibodies (Invitrogen, Carlsbad, CA). At the end of the incubation, the  coverslips  were 

washed with PBS containing Hoechst 33342 (Invitrogen, Carlsbad, CA) and images of at least 

1x103 cells per condition were collected on a fluorescence microscope. Prolactin (PRL 500 

ng/ml during 48h) was used as positive control. 

Protein extraction and western blotting. Protein lysates (30-50 µg) from MIN6B1 cells 

prepared as  described [9] were  separated on polyacrylamide  gels and transferred to 

polyvinylidine fluoride membranes. The membranes were incubated overnight  with 

antibodies against Granuphilin ([16], 1:2000); MAFA (Abcam  #ab17976,  1:1000),  mTOR 

(Cell  Signaling #2972,  1:1000),  cMET  (Cell  Signaling #3127,  1:1000)  and  GSK-3β (Cell 

Signaling #9315, 1:1000). Antibodies against  α-Tubulin  (T9026,  1:10000,  Sigma-Aldrich) 

and Actin (Clone C4 MAB1501, 1:15000, Millipore) were used to verify equal loading. After 

one hour exposure to  IRDye (Li-Cor® Biosciences, Bad Homburg,  Deutschland)  or 

horseradish peroxidase-coupled secondary antibodies, the bands were visualized via the 

Odyssey imaging system (Li-Cor® Biosciences) and chemiluminescence (GE Healthcare 

Europe, Glattbrugg, Switzerland), respectively. Band intensity was quantified by ImageJ 

software. 

Statistical analysis. Statistical differences were assessed using a Student’s t test or, for 

multiple comparisons, with one-way analysis of variance (ANOVA) of the means, followed 

by a post-hoc Dunnett test (SAS statistical package; SAS, Carry, NC). 

 
RESULTS 

 
Islet miRNA expression in rodent models of type 2 diabetes 

 
To investigate the contribution of miRNAs to beta cell dysfunction and the development of 

type  2  diabetes,  we  performed  global  miRNA  expression  profiling  in  pancreatic  islets 
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obtained from: db/db mice, which lack the leptin receptor and develop severe obesity 

associated with type 2 diabetes [10, 17] and diet-induced obese mice, which display mild 

hyperglycemia and beta cell dysfunction after being fed a high fat diet (HFD) for 8 weeks 

[11]. The characteristics of the animals used in this study are presented in ESM 2-4. We 

identified more than 60 differentially expressed miRNAs in db/db and HFD-fed mice islets 

compared to their respective controls, with overlapping changes in the two models (Fig.1). 

For db/db mice, miRNA expression was determined both in pre-diabetic (6 weeks old) 

and diabetic (14-20 weeks old) animals. In pre-diabetic mice,  the miRNAs displaying the 

most striking changes were miR-132, whose expression increased by 8.2-fold, and miR-210, 

miR-184, and miR-203 that decreased by 4.0, 3.4 and 2.0 fold, respectively (ESM Table 5). In 

agreement with our previous findings [9], the islets of pre-diabetic db/db mice contained also 

lower levels of miR-338-3p. The reduction of miR-210 and miR-184 was more dramatic in 

the islets of overtly diabetic db/db mice (10.4 and 115-fold decrease, respectively), whereas 

up-regulation of miR-132 and down-regulation of miR-203 and miR-338-3p remained 

approximately constant in pre-diabetic and diabetic animals (ESM Table 5 and 6). In addition 

to these changes, the islets of adult diabetic mice were characterized by alterations in the level 

of additional miRNAs, including an up-regulation of miR-199a-5p (12.6 fold) and miR-199a- 

3p (9.3 fold), a decline of miR-383 (13.7 fold) and, as previously reported [6], an increase of 

miR-34a and miR-146a (ESM Table 6). The results obtained by microarray analysis were 

confirmed by quantitative RT-PCR (Fig.2a-l). Our microarray data revealed also an increase 
 

of  miR-21  (2.2  fold),  that  we  have  previously  shown  to  inhibit  insulin  secretion  [8],  a 
 

decrease of miR-26a (1.6 fold) that controls insulin biosynthesis [18] and an increase of miR- 
 

802 regulating Hnf1b expression [19] (ESM Table 5 and 6). The role of these miRNAs was 
 

not further investigated in this study. 
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Islet miRNA expression was also analyzed in HFD-fed mice. For this purpose we selected a 

group of mice displaying the strongest response to HFD. These animals were markedly obese, 

insulin resistant, hyperinsulinemic and clearly hyperglycemic (ESM Table 4). HFD mice 

showed miRNA expression changes analogous to those observed  in  the  islets  of  diabetic 

db/db mice with the exception of miR-21, miR-34a, miR-146a, miR-199a-5p and miR-199a- 

3p (ESM Table 7 and Fig.2m-s). 

Overall the data indicate that a subset of islet miRNAs is similarly altered in two obesity- 

associated animal models of type 2 diabetes, suggesting a role of specific miRNAs in beta cell 

failure and the development of hyperglycemia. 

 
miRNA expressions are affected by glucolipotoxic conditions 

 

 
To determine the possible causes of the changes in miRNA expression detected in the islets of 

db/db and HFD-fed mice, we tested whether the level of these non-coding RNAs is affected 

by chronic exposure of beta cells to elevated concentration of glucose and free fatty acids. We 

found that prolonged incubation of rat islets (Fig.3) under glucolipotoxic conditions mimicked 

the modifications in miR-132, miR-184, miR-199-3p, miR-203 and miR-383 expression 

observed in animal models. In contrast, under these glucolipotoxic conditions the levels of 

miR-210 and miR-199a-5p were not affected (Fig.3). 

 
Particular differentially expressed miRNAs influence beta cell functions and survival 

MicroRNA  expression  modifications  in  islets  could  reflect  the  activation  of  adaptive 

processes  counterbalancing  the  increased  insulin  needs  caused  by  obesity  and  insulin 

resistance  or  the  instauration  of  pathological  conditions  leading  to  beta  cell  dysfunction. 
 

Indeed, we have previously shown that down-regulation of miR-338-3p contributes to 

compensatory beta cell mass expansion [9], whereas overexpression of miR-21, miR-34a and 

miR-146a  negatively  impacts  beta  cell  function  [6].  To  assess  the  possible  role  of  other 
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differentially expressed miRNAs in these phenomena, we mimicked the changes observed in 

the animal models by transfecting dissociated rat islet cells and MIN6B1 cells with 

oligonucleotide duplexes corresponding to the mature  miRNA sequences or with anti-miR 

molecules that specifically inhibit miRNAs (ESM Fig.1). The transfected cells were then 

analyzed for their functional properties. 

We first assessed whether the miRNAs differentially expressed in type 2  diabetes 

models are involved in the regulation of insulin biosynthesis and release. Most of the studied 

miRNAs did not affect insulin content (Fig.4a-c) or insulin release in dissociated rat islet cells 

(Fig.4d-f) and MIN6B1 cells (ESM Fig.2). However, overexpression of miR-132 resulted in 

improved glucose-stimulated insulin release from dissociated rat islet cells (Fig.4d). In 

contrast, up-regulation of miR-199a-5p led to an insulin secretory defect in MIN6B1 cells 

(ESM Fig.2), but not in islet cells, where it only diminished the insulin content (Fig.4a). 

We next investigated whether the miRNAs differentially expressed in type 2 diabetes 

models regulate beta cell expansion. In MIN6B1 cells, up-regulation of miR-132 or down- 

regulation of miR-184, miR-203 and miR-383 led to an increase in proliferation while 

modifications of the level of other miRNAs had no significant effects (ESM Fig.3). 

Proliferation of insulin-positive cells was also observed upon up-regulation of miR-132 and, 

to a lesser extent, down-regulation of miR-184 in dispersed rat islet cells (Fig.5). In contrast, 

down-regulation of miR-203 and miR-383 in primary cells had no effect. Similar to  our 

previous work with miR-338-3p [9], these findings suggest that modifications of the level of 

miR-132 and miR-184 contributes to compensatory beta cell mass expansion elicited in 

response to insulin resistance. 

Since an increase in beta cell apoptosis and a reduction in beta cell mass are thought to 

play a role in the development of type 2 diabetes [20], we investigated the impact of miRNAs 

of interest on beta cell survival. As previously observed for miR-21, miR-34a and miR-146a 
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[6], up-regulation of miR-199a-3p or reduction of miR-203, miR-210 and miR-383 expression 

increased the number of apoptotic MIN6B1 cells (ESM Fig.4) as well as dispersed rat islet 

cells   (Fig.6a,c,e).   Similar   results   were   obtained   using   dissociated   human   islet   cells 
 

(Fig.6b,d,f). In contrast, overexpression of miR-132 or silencing of miR-184 did not induce 
 

beta cell death, but rather protected dispersed rat (Fig.7a-d) and human (Fig.7e-h) islet cells 
 

from apoptosis when the cells were chronically exposed to elevated concentrations of free 
 

fatty acids or to proinflammatory cytokines. Analogous results were also obtained in MIN6B1 

cells (ESM Fig.5). 

 
 
 

Impact of particular miRNA changes on candidate target gene expression 
 

As described above, db/db mouse islets are characterized by a specific rise in the levels of 

miR-21, miR-34a, miR-146a, miR-199a-3p and -5p and a downregulation of miR-203, miR- 

210 and miR-383 that possibly result in beta cell dysfunction and death. We previously found 

that miR-34a affects beta cell survival by directly targeting the anti-apoptotic protein Bcl2 [6]. 

Combining   bioinformatics   prediction   algorithms   (http://mirsystem.cgm.ntu.edu.tw/),   and 
 

literature  search,  we  identified  other  miRNA  targets  potentially  explaining  the  functional 
 

effects observed. In hepatocytes, miR-199a-3p regulates the expression of mammalian target 

of rapamycin (mTOR) and of the transcription factor cMET [21], two proteins known to play 

important roles in the control of beta cell mass and survival [22, 23]. We found that up- 

regulation of miR-199a-3p results in decreased expression of mTOR and cMET also in 

MIN6B1 cells (ESM Fig.6), possibly explaining the negative impact of this miRNA on beta 

cell survival. 

Increased expression of miR-132 displays beneficial effects on both beta cell mass and 

function.  Computational  prediction  algorithms  (http://mirsystem.cgm.ntu.edu.tw/)  indicate 

that Granuphilin (also known as Slp-4), a granule-associated protein that negatively affects 
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insulin release [16], and GSK-3β, which negatively regulates beta cell function and mass [24, 

25], are potential miR-132 targets. Translational repression of these two genes could explain, 

at least in part, the phenotypic traits of beta cells overexpressing miR-132. However, Western 

blot analysis did not reveal any significant impact of miR-132 on the level of these proteins in 

MIN6B1 cells (ESM Fig.6). MiRNAs often have small impacts on the expression of single 

direct targets [26]. However, cumulative effects can have major indirect influences on gene 

expression and cellular activities. Thus, instead of searching for direct targets, we measured 
 

the cellular level of a group of transcription factors known from the literature to improve 
 

survival and function of beta cells [27-29]. We found that up-regulation of miR-132 in rat 

islet cells did not affect the mRNA levels of FoxM1 and Pdx-1 but increased the level of 

MafA (Fig.8b). miR-184 down-regulation that induces overlapping phenotypic changes did 

not alter the expression level of these genes (not shown). 
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DISCUSSION 
 

We have identified two groups of miRNAs displaying differential expression in pancreatic 

islets isolated from two animal models characterized by obesity, insulin resistance and beta 

cell dysfunction: the db/db mice and the HFD-fed mice. The changes in the expression of 
 

miR-21,  miR-34a,  miR-132,  miR-146a,  miR-184,  miR-210  and  miR-383  detected  in  this 
 

study are consistent with those described by Zhao and coll. in the islets of leptin-deficient 
 

ob/ob mice  [5]  and  are  in  agreement  with  previous  findings  from  our  laboratory  [6,  9]. 
 

Elevated miR-21 levels were also detected in islets of glucose-intolerant human donors [30]. 
 

Moreover, our microarray data confirm the up-regulation of miR-802 in the islets of db/db 
 

mice recently observed by Kornfeld et al. [19]. Increased expression of miR-132, miR-199a- 
 

5p and miR-199a-3p have also been reported in the islets of GK rats, a lean model of type 2 
 

diabetes [7]. Consistent with results obtained in ob/ob mice [5], our microarray data did not 
 

reveal  significant  changes  in  the  level  of  many  miRNAs  that  play important  roles  in the 
 

control of beta cell functions, including miR-9, miR-24, miR-124 and miR-148 [18, 31-33]. 
 

Moreover, we did not detect differences in the level of miR-375, an islet enriched miRNA that 
 

regulates insulin secretion and beta cell proliferation and that is slightly up-regulated (about 
 

30%) in ob/ob mice [34]. Thus, although appropriate expression of these miRNAs is required 
 

for insuring optimal beta cell functions, development of type 2 diabetes appears not to be 
 

associated with major changes in the level of these non-coding RNAs. However, individuals 
 

expressing inappropriate levels of these miRNAs may display defective beta cell functions 
 

[30]  and  may  be  more  susceptible  to  type  2  diabetes  manifestation.  Indeed,  ob/ob mice 
 

lacking miR-375 develop diabetes [34]. 
 

The analysis of the functional impact of individual changes in miRNA expression in 

isolated islet cells revealed that some of them have beneficial effects on the activity of insulin- 

secreting cells whereas others result in beta cell death. Up-regulation of miR-132 and down- 
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regulation of miR-184 and miR-338-3p are already observed in 6 week-old pre-diabetic obese 

db/db mice. These adaptive changes in miRNA expression that have a positive impact on beta 

cell functions are conserved or are even more pronounced in HFD-fed and 14 to 20 week-old 

diabetic db/db mice. Indeed, when the level of these particular miRNAs was modulated in 

vitro, both tumoral and normal beta cells displayed enhanced proliferation and resistance to 

pro-apoptotic stimuli (present study and [9]). Moreover, a rise in the level of miR-132 

improved the secretory response of the cells to glucose. These observations suggest that 

adaptive expression of miR-132, miR-184 and miR-338-3p may contribute to beta cell 

compensation processes. 

The increased  miR-132 content and the decreased  miR-184 expression observed in 

db/db and HFD-fed mice were mimicked by incubation of dissociated rat islet cells in the 

presence of chronically elevated concentrations of palmitate and glucose. This suggests that 

these miRNAs may be induced in response to hyperglycemia and hyperlipidemia, two 

conditions typically encountered in pre-diabetic and diabetic states. In neurons, the expression 

of miR-132 is triggered following activation of  the cAMP-dependent pathway and of the 

transcription factor CREB [35-40]. Incubation of INS-1 832/13 cells, a rat insulinoma cell 

line, with cAMP-raising agents has been shown to cause a rapid increase of the miR-132 

precursor [41], indicating that a similar regulatory mechanism may also operate in beta cells. 

The mechanisms underlying the effects caused by changes in the level of miR-132 and 

miR-184 remain to be fully elucidated. We found that up-regulation of miR-132 in dissociated 

rat islet cells leads to increased expression of MafA, a gene playing an important role in the 

control of beta cell function and survival [28]. The expression of this transcription factor is 

decreased by palmitate [42] and is strongly reduced in the islets of diabetic db/db mice [10, 

43].  Moreover,  nuclear  MafA  was  recently  reported  to  be  diminished  in  the  islets  of 
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individuals affected by type 2 diabetes [44]. Our data suggest that the induction of miR-132 

helps preserving the level of MafA during obesity associated beta cell compensation. 

On the long term, the adaptive changes elicited by miR-132, miR-184 and miR-338-3p 

may become insufficient to counterbalance insulin resistance, also because of alterations in 

the level of additional miRNAs having deleterious impacts on beta cells. Indeed, the islets of 

HFD-fed and of diabetic db/db mice displayed changes in the level of several other miRNAs, 

including miR-21, miR-34a, miR-146a, miR-199a-5p, miR-199a-3p, miR-203, miR-210 and 

miR-383 whose variation in expression in vitro causes beta cell dysfunction and death ([6] [8] 

and present study). We previously showed that induction of miR-34a and miR-146a triggers 

beta cell apoptosis and that miR-21 and miR-34a have a deleterious impact on insulin 

secretion [6]. Experiments carried out in this study revealed an increase in apoptosis upon 

overexpression of miR-199a-3p or down-regulation of miR-203, miR-210 and miR-383 in 

dissociated rat and human islet cells and in MIN6B1 cells. These phenotypic changes are not 

unique to beta cells since modifications in the level of some of these miRNAs  promote 

apoptosis in other cell systems [21, 45-47]. Overexpression of miR-199a-3p resulted in a 

reduction of the levels of mTOR and cMET, two well characterized targets of this miRNA 

[21, 48]. Disruption of the signaling pathways involving these two proteins is detrimental for 

beta cells [23, 49]. Moreover, mTOR is an important regulator of  autophagy,  a  process 

thought to contribute to type 2 diabetes onset [50]. Thus, the toxic effects of miR-199a-3p 

may be the consequence of diminished expression of mTOR and cMET. 

In conclusion, the present study is the first globally addressing the role of miRNAs in 

the etiology of type 2 diabetes by systematically investigating the impact on primary beta cell 

function of miRNA changes observed in two animal models of obesity-associated diabetes. 

Our data demonstrate that obesity and insulin resistance are associated with modifications in 

two distinct  groups  of islet  miRNAs  that have  opposing phenotypic  effects  on  beta cells. 
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Expression changes in miRNAs promoting beta cell mass expansion and boosting glucose- 

induced insulin secretion already occur in normoglycemic animals and probably belong to 

adaptive processes allowing beta cells to compensate for insulin resistance. If these 

mechanisms fail to compensate for the diminished insulin sensitivity, additional modifications 

in miRNA expression may accumulate causing beta cell failure and manifestation of type 2 

diabetes. We propose that beta cell activities are tuned by a balance between the levels of 

particular miRNAs associated with enhanced function and mass, such as miR-132, miR-184 

and miR-338-3p, and others having negative impacts, including miR-21, miR-34a, miR-146a, 

miR-199a-5p, miR-199a-3p, miR-203, miR-210 and miR-383. A better understanding of the 

precise role of particular miRNAs involved in the natural history of the beta cell in diabetes 

may be harnessed to design novel therapeutic strategies for diabetes prevention and treatment. 
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FIGURE LEGENDS 
 
 

FIG 1. miRNAs differentially expressed in pancreatic islets of type 2 diabetes animal 

models. Pancreatic islets were isolated from prediabetic (6 weeks old) and diabetic (14-20 

weeks old) db/db mice and from high-fat diet fed (HFD) mice. miRNA expression levels were 

analysed by microarray. Data are expressed as fold changes versus the corresponding controls 

and are presented on a logarithmic scale. Only miRNAs displaying increases (white circles) or 

decreases (black squares) of at least 1.5 fold (p ≤ 0.05) are plotted. Dashed lines correspond to 

2 fold change. 

 
FIG 2. miRNA expression changes in islets of type 2 diabetes animal models. The 

expression level of the indicated miRNAs was measured by qRT-PCR in pancreatic islets of 

prediabetic (a-d) and diabetic (e-l) db/db mice (versus age-matched mice) and in mice fed a 

normal or a high-fat diet (m-s). The results correspond to the mean ± SD of three to four 

animals per group and are normalized to the level of the respective controls. * Significantly 

different from control (p ≤ 0.05 by unpaired student t-test). 

 
FIG 3. Effect of chronically elevated glucose and palmitate on the level of islet miRNAs 

differentially expressed in type 2 diabetes animal models. Isolated rat islets were incubated 

at 11 (11 G) or 20 (20 G) mmol/l glucose with 0.5% BSA in the absence (black bars) or 

presence of 0.5 mmol/l palmitate for 48h (grey bars) or 72h (white bars). miRNA expression 

levels were measured by qRT-PCR,  normalized by miR-7 and expressed as percentage of 

control (11 mmol/l glucose with 0.5 % BSA) (a-g). * Significantly different from the control 

condition (p ≤ 0.05 by ANOVA analysis, Dunnett’s post-hoc test). 

 
FIG 4. Impact of changes in miRNA expression on insulin content and insulin secretion. 

 
Dispersed rat islet cells were transfected with oligonucleotides leading to overexpression (a, 

 
d) or down-regulation (b, c, e, f) of the indicated miRNAs. Insulin content (a-c) and insulin 
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secretion (d-f) in response to 2 (black bars) or 20 (white bars) mmol/l glucose were measured 

48h post-transfection. Insulin release is expressed as percentage of insulin content. * 

Significantly different from control condition (versus control transfection,  incubated at the 

same glucose concentration) (p ≤ 0.05 by ANOVA analysis, Dunnett’s post-hoc test). 

 
FIG 5. Effect of specific modifications in miRNA expression on β-cell proliferation. 

Dispersed rat islet cells were transfected with oligonucleotides leading to overexperession (a) 

or down-regulation (b) of the indicated miRNAs. β−cell proliferation was assessed 72h later 

by the staining of the cells with anti-Ki67 and anti-insulin antibodies. Prolactin (PRL 500 

ng/ml during 48h, cross-hatched bar) was used as positive control. The results correspond to 

the mean ± SD of three to six independent experiments. * Significantly different from control 

condition (p ≤ 0.05 by ANOVA analysis, Dunnett’s post-hoc test). 

 
FIG 6. Impact of specific miRNA expression changes on islet cell survival. Dissociated rat 

(a, c, e) and human (b, d, f) islet cells were transfected with the indicated miRNA mimics (a, 

b) or anti-miRNAs (c, d, e, f). Cell death was assessed by scoring  the  cells  displaying 

pycnotic nuclei upon Hoechst staining. Incubation during 24h with a mix of pro-inflammatory 

cytokines was used as a positive control for apoptosis (cyt. mix, cross-hatched bars). The 

results correspond to the mean ± SD of three to four independent experiments. * Significantly 

different from control condition (p ≤ 0.05 by ANOVA analysis, Dunnett’s post-hoc test). 

 
FIG 7. Overexpression of miR-132 and inhibition of miR-184 protect β-cells against 

palmitate or cytokines-induced apoptosis. Dissociated rat (a-d) or human (e-h) islet cells 

were transfected with miR-132 mimic, or with anti-miR-184. The cells were then incubated 

for 48h with (white bars) or without (black bars) 0.5 mmol/l palmitate coupled to 0.5 % BSA 

(a, b, e, f), or for 24h with (cross-hatched bars) or without (black bars) a mix of pro- 

inflammatory cytokines (c, d, g, h). Apoptosis was assessed 48h post-transfection by Hoechst 
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staining of pycnotic nuclei. The results correspond to the mean ± SD of three to four 

independent experiments. * Significantly different from treated control condition. (p ≤ 0.05 

by ANOVA analysis, Dunnett’s post-hoc test). 

 
FIG 8. Effect of mir-132 overexpression on MafA mRNA expression level in islet cells. 

Dissociated rat islet cells were transfected with control (black bars) or miR-132 

oligonucleotide mimics (white bars). Two days after transfection the level of miR-132 (a) and 

of MafA, FoxM1 and Pdx1 mRNAs (b) were analysed by qRT-PCR. The results correspond 

to the mean ± SD of at least three independent experiments. * Significantly different from 

control condition (p ≤ 0.05 by ANOVA analysis, Dunnett’s post-hoc test). 
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ESM  Table  1:  Characteristics  of  the  donors  and  of  the  human  pancreatic  islet 
preparations that were used for functional assays in this study. 

 

 
 
 

 
 

Gender 

 
 

Age 

 
 

BMI 

 
 

Cause of death 

 
Cold ischemic 

time 
(hh:mm) 

 
 

Islets purity 
(%) 

 
Islets 

viability 
(%) 

F 54 30.5 n/a n/a 70 90 
F 49 22.0 stroke 01:40 66 85 
F 54 19.1 stroke 08:10 79 85 
F n/a 19.1 cerebral trauma 03:37 80 90 
F 56 19.7 stroke 07:13 87 90 
F 56 23.8 stroke 01:00 85 90 
F 58 19.2 stroke 06:00 85 90 
F 62 25.7 stroke 03:00 61 95 
M 55 25.8 n/a 10:00 89 90 
M 49 21 stroke 06:00 93 95 
mean 

SD 
54.8 
4.1 

22.6 
3.8 

 

- 
 

- 79.5 
10.6 

90.0 
3.3 
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ESM Table 2: characteristics of pre-diabetic db/db mice and age-matched controls used 
in this study. The table shows the weights and glycaemia of each of the mice from which 
pancreatic islet RNA was isolated. The islet preparations used for microarray analysis are 
indicated by the asterisks. Insulin plasma levels of an identical population of pre-diabetic 
db/db mice were reported previously [Chan JY et al., Diabetes 62:1557-1568, 2013]. 

 
 
 

 
 

Mice group 

  
 

Phenotype 

 
 

Weight 
(g) 

 
 

Glycaemia 
(mmol/l) 

Control db/+  20.7 11.5 
db/+ (*) 20.0 9.7 
db/+  17.3 8.7 
db/+ (*) 15.6 9.1 
db/+ (*) 16.7 7.4 
db/+ (*) 15.3 7.2 

mean  17.6 8.9 
SD 2.3 1.6 

Pre-diabetic db/db db/db (*) 28.8 8.7 
db/db (*) 30.7 8.5 
db/db  24.2 9.8 
db/db (*) 25.8 11.2 
db/db (*) 25.7 8.8 
db/db  26.3 9.2 
db/db  25.6 9.0 

mean  26.7 9.3 
SD 2.2 0.9 
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ESM Table 3: characteristics of diabetic db/db mice and age-matched controls used in 
this study. The table shows the weights and glycaemia of each of the mice from which 
pancreatic islet RNA was isolated. The islet preparations used for microarray analysis are 
indicated by the asterisks. Insulin plasma levels of an identical population of diabetic db/db 
mice were reported previously [Chan JY et al., Diabetes 62:1557-1568, 2013]. 

 
 
 

 
 

Mice grou 

 
 
p 

 
 

Phenotype 

 
 

Weight 
(g) 

 
 

Glycaemia 
(mmol/l) 

Control wt (*) 23.0 7.5 
wt  21.1 6.1 
wt  22.5 7.2 
wt  20.8 6.8 
wt (*) 25.5 6.9 
db/+ (*) 26.5 6.8 
db/+ (*) 24.7 6.8 

mean  23.4 6.9 
SD 2.2 0.4 

Diabetic db/db db/db (*) 50.5 25.5 
db/db  48.1 23.9 
db/db  45.9 17.1 
db/db (*) 47.3 21.3 
db/db  45.1 17.6 
db/db (*) 50.0 20.8 
db/db (*) 47.0 20.2 

mean  47.7 20.9 
SD 2.0 3.1 
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ESM Table 4: characteristics of ND and HFD mice used in this study. We selected mice 
that displayed the highest response to high fat feeding [Peyot ML et al., Diabetes 59: 2178- 
2187, 2010]. The table reports weights, glycaemia and insulinemias of each of the mice from 
which pancreatic islet RNA was isolated. 

 
 
 

Mice 
group 

 
Weight 

before diet 
(g) 

 
Weight at 
6.5 weeks 

(g) 

 
Glycemia at 
6.5 weeks 
(mmol/l) 

 
Weight at 
sacrifice 

(g) 

 
Glycemia at 

sacrifice 
(mmol/l) 

 
 

Insulinemia 
(mmol/l) 

ND 23.10 35.90 7.44 37.70 7.10 437.30 
22.60 33.10 7.55 34.80 6.99 778.59 
22.30 33.10 7.79 34.70 8.49 230.41 
20.90 33.70 7.09 36.00 7.59 414.93 

mean 22.23 33.95 7.47 35.80 7.55 465.31 
SD 0.94 1.33 0.29 1.40 0.68 228.51 

HFD 19.80 46.20 9.05 46.20 9.21 801.34 
22.00 45.80 9.79 47.40 11.69 4916.68 
22.60 48.80 12.19 49.70 11.89 818.46 
23.40 45.30 9.89 47.60 9.09 3324.02 

mean 21.95 46.53 10.23 47.73 10.47 2465.12 
SD 1.54 1.56 1.36 1.45 1.53 2018.87 
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ESM Table 5. Microarray analysis of pre-diabetic db/db vs control mice. MiRNAs 

expression was assessed in pancreatic islets of pre-diabetic db/db mice versus age-matched 

control animals via microarray analysis. The table shows miRNAs whose expression was 

significantly different in pre-diabetic db/db mice (p-value ≤ 0.05; > 1.5 fold-change 

difference). The mean expression of each group (control or pre-diabetic db/db) is presented in 

a log2 scale. MiRNAs investigated in this study are highlighted in blue while those studied in 

previous papers [Lovis et al., Diabetes 57: 2728-2736, 2008; Roggli et al., Diabetes, 59: 978- 

986, 2010; Jacovetti et al., J Clin Invest, 122: 3541-3551, 2012] are in grey. 
 
 

     
 

Systematic Name Fold change Regulation means of expression 
([dbdb] vs [ctrl]) ([db/db] vs [ctrl]) ctrl pre-diabetic db/db 

mmu-miR-132 8.212 up 6.916 9.954 
mmu-miR-455* 4.693 up 2.406 4.637 
mmu-miR-152 2.652 up 8.623 10.030 
mmu-miR-455 2.407 up 3.614 4.882 
mmu-miR-139-5p 2.395 up 1.974 3.234 
mmu-miR-301b 2.351 up 1.575 2.808 
mmu-miR-721 2.276 up 3.970 5.157 
mmu-miR-212 2.158 up 6.747 7.856 
mmu-miR-150 2.060 up 2.312 3.355 
mmu-miR-483 2.024 up 2.748 3.766 
mmu-miR-142-3p 1.943 up 6.277 7.236 
mmu-miR-146a 1.941 up 5.442 6.399 
mmu-miR-337-5p 1.738 up 7.051 7.848 
mmu-miR-193 1.727 up 2.755 3.543 
mmu-miR-337-3p 1.715 up 7.816 8.594 
mmu-miR-582-5p 1.698 up 4.536 5.300 
mmu-miR-146b 1.672 up 3.093 3.835 
mmu-miR-182 1.645 up 4.200 4.918 
mmu-miR-433 1.594 up 5.253 5.926 
mmu-miR-452 1.585 up 4.996 5.661 
mmu-miR-676 1.543 up 3.500 4.126 
mmu-miR-22 1.541 up 10.727 11.351 
mmu-miR-141* 1.523 up 4.573 5.180 
mmu-miR-216a 4.200 down 3.268 1.197 
mmu-miR-210 4.048 down 4.377 2.360 
mmu-miR-762 4.032 down 2.043 0.031 
mmu-miR-31* 3.711 down 4.301 2.409 
mmu-miR-184 3.385 down 7.165 5.406 
mmu-miR-218 3.090 down 4.126 2.499 
mmu-miR-23b 2.124 down 11.177 10.090 
mmu-miR-203 2.046 down 5.235 4.203 
mmu-miR-802 1.794 down 4.709 3.866 
mmu-miR-378 1.680 down 4.774 4.025 
mmu-miR-671-5p 1.653 down 5.678 4.953 
mmu-miR-27b 1.634 down 9.966 9.258 
mmu-miR-100 1.619 down 3.925 3.230 
mmu-miR-24-1* 1.609 down 3.882 3.195 
mmu-miR-338-3p 1.560 down 7.949 7.308 
mmu-miR-194 1.503 down 6.222 5.635 
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ESM Table 6. Microarray analysis of diabetic db/db vs control mice. RNA isolated from 

pancreatic islets of diabetic db/db and age-matched control mice was used to profile miRNAs 

expression by microarray analysis. The table shows miRNAs whose expression was 

significantly different in diabetic db/db mice (p-value ≤ 0.05; > 1.5 fold-change difference). 

The mean expression of each group (control or pre-diabetic db/db) is presented in a log2 

scale. MiRNAs investigated in this study are highlighted in orange while those studied 

previously [Lovis et al., Diabetes 57: 2728-2736, 2008; Roggli et al., Diabetes, 59: 978-986, 

2010; Jacovetti et al., J Clin Invest, 122: 3541-3551, 2012] are in grey. 
 

     
 

Systematic Name Fold change Regulation means of expression 
([db/db] vs [ctrl]) ([db/db] vs [ctrl]) ctrl diabetic db/db 

mmu-miR-199a-5p 
mmu-miR-199a-3p 

12.615 
9.359 

up 
up 

2.534 6.191 
4.745 7.972 

mmu-miR-139-5p 8.009 up 1.531 4.532 
mmu-miR-199b* 7.095 up 3.824 6.651 
mmu-miR-455* 6.841 up 1.958 4.732 
mmu-miR-802 6.020 up 4.867 7.457 
mmu-miR-132 5.307 up 6.823 9.231 
mmu-miR-721 2.902 up 5.122 6.659 
mmu-miR-1224 2.830 up 9.254 10.755 
mmu-miR-100 2.684 up 3.881 5.305 
mmu-miR-497 2.640 up 6.609 8.010 
mmu-miR-676 2.634 up 3.558 4.955 
mmu-miR-143 2.317 up 5.929 7.141 
mmu-miR-21 2.249 up 9.918 11.087 
mmu-miR-34b-5p 2.228 up 8.252 9.407 
mmu-miR-195 2.042 up 7.148 8.178 
mmu-miR-10b 1.953 up 5.423 6.389 
mmu-miR-34a 
mmu-miR-146a 

1.932 
1.924 

up 
up 

7.372 8.322 
5.969 6.914 

mmu-miR-34c 1.819 up 6.805 7.668 
mmu-miR-126-3p 1.817 up 10.328 11.189 
mmu-miR-322 1.789 up 5.704 6.544 
mmu-miR-152 1.766 up 9.210 10.031 
mmu-miR-22* 1.751 up 4.488 5.296 
mmu-miR-337-5p 1.748 up 7.203 8.009 
mmu-miR-582-5p 1.738 up 5.229 6.027 
mmu-miR-433* 1.718 up 3.287 4.067 
mmu-miR-337-3p 1.678 up 7.886 8.633 
mmu-miR-181c 1.674 up 4.933 5.677 
mmu-miR-10a 1.648 up 6.182 6.902 
mmu-miR-365 1.640 up 5.239 5.953 
mmu-miR-146b 1.627 up 3.932 4.634 
mmu-miR-320 1.564 up 4.845 5.490 
mmu-miR-99a 1.550 up 6.363 6.995 
mmu-miR-212 1.535 up 7.010 7.628 
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mmu-miR-184 115.155 down 6.909 0.061 
mmu-miR-383 13.675 down 4.891 1.118 
mmu-miR-210 10.427 down 4.709 1.327 
mmu-miR-31 3.349 down 7.415 5.671 
mmu-miR-203 2.649 down 5.581 4.176 
mmu-miR-325 2.418 down 3.984 2.710 
mmu-miR-23b 2.262 down 11.329 10.152 
mmu-miR-338-3p 2.236 down 8.366 7.206 
mmu-miR-378 2.223 down 4.830 3.678 
mmu-miR-384-5p 2.139 down 7.084 5.987 
mmu-miR-27b 2.055 down 10.095 9.056 
mmu-miR-374 1.934 down 5.641 4.689 
mmu-miR-328 1.929 down 5.499 4.551 
mmu-miR-381 1.840 down 6.586 5.706 
mmu-miR-30d 1.804 down 8.426 7.575 
mmu-miR-30e* 1.719 down 5.588 4.806 
mmu-miR-129-3p 1.711 down 10.830 10.055 
mmu-miR-204 1.702 down 8.392 7.625 
mmu-miR-434-3p 1.688 down 9.078 8.322 
mmu-miR-301a 1.673 down 7.877 7.135 
mmu-miR-324-5p 1.648 down 7.110 6.389 
mmu-miR-872 1.638 down 6.156 5.444 
mmu-miR-30e 1.636 down 9.670 8.960 
mmu-miR-103 1.630 down 9.540 8.835 
mmu-miR-26a 1.592 down 12.056 11.385 
mmu-miR-331-3p 1.586 down 7.048 6.383 
mmu-miR-652 1.585 down 8.935 8.270 
mmu-miR-341 1.570 down 6.075 5.424 
mmu-miR-129-5p 1.548 down 7.979 7.349 
mmu-miR-324-3p 1.538 down 5.085 4.464 
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Systematic Name Fold change Regulation means of expression 
([HFD] vs [ND]) ([HFD] vs [ND]) ND HFD 

mmu-miR-125a-3p 28.959 up 4.689 9.545 
mmu-miR-211 12.573 up 3.336 6.989 
mmu-miR-714 12.573 up 5.120 8.772 
mmu-miR-221 6.039 up 5.453 8.048 
mmu-miR-7a-1* 5.830 up 12.186 14.730 
mmu-miR-380-3p 5.671 up 3.393 5.897 
mmu-miR-802 5.044 up 3.336 5.671 
mmu-miR-200c* 4.893 up 5.634 7.924 
mmu-miR-1897-5p 4.727 up 3.460 5.701 
mmu-miR-188-5p 4.720 up 3.594 5.833 
mmu-miR-193 4.031 up 3.336 5.347 
mmu-miR-132 3.923 up 8.053 10.025 
mmu-let-7d* 3.835 up 7.507 9.446 
mmu-miR-322 3.247 up 4.672 6.371 
mmu-miR-205 3.211 up 6.340 8.023 
mmu-miR-362-5p 3.180 up 3.336 5.005 
mmu-miR-671-5p 2.897 up 4.932 6.467 
mmu-miR-702 2.712 up 3.336 4.776 
mmu-miR-130b* 2.506 up 4.433 5.758 
mmu-miR-1906 2.431 up 3.336 4.618 
mmu-miR-670 2.386 up 8.183 9.438 
mmu-miR-494 2.371 up 4.803 6.048 
mmu-miR-680 2.346 up 5.070 6.300 
mmu-miR-540-3p 2.225 up 4.420 5.574 
mmu-miR-455* 2.172 up 3.336 4.455 
mmu-miR-615-3p 2.051 up 3.336 4.372 
mmu-miR-484 2.035 up 4.320 5.345 
mmu-miR-34c 1.993 up 7.515 8.510 
mmu-miR-323-3p 1.976 up 3.611 4.594 
mmu-miR-101b 1.930 up 6.315 7.264 
mmu-miR-216b 1.909 up 3.336 4.269 
mmu-miR-1894-5p 1.822 up 3.336 4.202 
mmu-miR-1224 1.809 up 8.638 9.493 
mmu-miR-1904 1.773 up 7.139 7.965 
mmu-miR-705 1.720 up 3.336 4.119 
mmu-miR-770-3p 1.709 up 3.336 4.109 
mmu-miR-485* 1.692 up 3.336 4.095 
mmu-miR-152 1.663 up 9.775 10.509 
mmu-miR-182 1.661 up 6.758 7.490 
mmu-miR-337-3p 1.609 up 8.001 8.687 
mmu-miR-433 1.576 up 5.812 6.468 
 

 
 
 
 
 

ESM Table 7. Microarray analysis of miRNA expression in pancreatic islets from mice 

fed a normal or a high fat diet. MiRNA expression was profiled in pancreatic islets isolated 

from mice fed a high fat diet (HFD) or normal diet (ND) during 8 weeks. The table shows all 

the miRNAs displaying expression changes under high fat diet higher than 1.5 fold. The 

miRNAs investigated in this study are highlighted in green. 
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mmu-miR-24-1* 14.853 down 11.075 7.182 
mmu-miR-335-5p 8.754 down 6.466 3.336 
mmu-miR-184 8.355 down 7.272 4.210 
mmu-miR-29a* 6.029 down 5.928 3.336 
mmu-miR-148a* 5.460 down 5.785 3.336 
mmu-let-7b* 5.328 down 8.156 5.743 
mmu-miR-100 4.378 down 7.677 5.546 
mmu-miR-697 4.350 down 6.199 4.078 
mmu-miR-199a-3p 3.436 down 5.526 3.745 
mmu-miR-1198-5p 3.395 down 7.282 5.519 
mmu-miR-30c-1* 3.168 down 5.000 3.336 
mmu-miR-203 2.870 down 4.857 3.336 
mmu-miR-676 2.699 down 8.424 6.991 
mmu-miR-1187 2.652 down 5.113 3.706 
mmu-miR-210 2.609 down 4.904 3.521 
mmu-miR-30b* 2.579 down 7.401 6.035 
mmu-miR-344b 2.441 down 5.952 4.665 
mmu-miR-33 2.405 down 4.602 3.336 
mmu-miR-28 2.235 down 8.202 7.042 
mmu-miR-378 2.232 down 4.495 3.336 
mmu-miR-32 2.223 down 4.489 3.336 
mmu-miR-31* 2.205 down 4.477 3.336 
mmu-miR-215 2.138 down 4.433 3.336 
mmu-miR-539-5p 2.108 down 4.412 3.336 
mmu-miR-301b 2.100 down 6.607 5.537 
mmu-miR-223 2.071 down 5.285 4.235 
mmu-miR-218 1.899 down 4.262 3.336 
mmu-miR-10a 1.868 down 7.265 6.364 
mmu-miR-1892 1.834 down 4.212 3.336 
mmu-miR-700 1.825 down 4.204 3.336 
mmu-miR-543 1.810 down 7.635 6.779 
mmu-miR-541 1.762 down 7.147 6.330 
mmu-miR-690 1.760 down 7.589 6.773 
mmu-miR-384-5p 1.646 down 7.458 6.739 
mmu-miR-328 1.632 down 7.343 6.636 
mmu-miR-383 1.608 down 7.512 6.826 
mmu-miR-202-3p 1.599 down 7.315 6.638 
mmu-miR-181d 1.510 down 3.931 3.336 

 



 

Page 45 of 52 
 
 
 
 
 

ESM FIGURE LEGENDS 
 
 

ESM FIG 1. Up or downregulation of miRNA expression in rat islet and MIN6B1 
cells. Dispersed rat pancreatic islets cells (A) or MIN6B1 cells (B) were transfected with 
the indicated miRNA mimics, anti-miRNAs or their respective controls (Ctrl or anti-ctrl). 
miRNA overexpression or downregulation was measured by qRT-PCR and normalized to 
U6 or miR-7 levels. Results are expressed as fold change versus Ctrl or as percentage of 
anti-ctrl and correspond to the mean ± SD of at least three independent experiments. * 
Significantly different from control (p-value ≤ 0.05, Student T-test). 

 
 

ESM FIG. 2. Impact of specific miRNA changes on insulin content and secretion in 
MIN6B1 cells. MIN6B1 cells were transfected with the indicated miRNA mimics, anti- 
miRNAs or respective controls (Ctrl or anti-ctrl). Two days later, insulin secretion under 
basal (glucose 2 mmol/l, black bars) and stimulatory conditions (glucose 20 mmol/l, 
white bars) (A) and insulin contents (B) were determined. Insulin release is expressed as 
percentage of insulin content. The results represent means ± SD of four to five 
independent experiments. *Significantly different from control condition (p-value ≤ 0.05, 
ANOVA, Dunnett’s post-hoc test). 

 
 

ESM FIG 3. Impact of specific miRNA changes on MIN6B1 proliferation. MIN6B1 
cells transfected with the indicated miRNA mimics (A) or anti-miRNAs (B) were stained 
with an antibody against Ki67 to assess cell proliferation. Prolactin (PRL 500 ng/ml 
during 48 h) and exendin-4 (100 nmol/l, 48h) were used as positive controls. The results 
are expressed as fold change versus the respective control and correspond to the mean ± 
SD of at least three independent experiments. * Significantly different from control 
condition (p-value ≤ 0.05, ANOVA, Dunnett’s post-hoc test). 

 
 

ESM FIG 4. Impact of specific miRNA changes on apoptosis in MIN6B1 cells. 
MIN6B1 cells were transfected with the indicated miRNA mimics, anti-miRNAs or the 
respective controls. Cell death was assessed two days later by determining the percentage 
of cells displaying pycnotic nuclei upon Hoechst staining. A mix of pro-inflammatory 
cytokines (IL-1β, TNFα and IFNγ) was used as a positive control for cell death. The 
results  are  expressed  as  means  ±  SD  of  at  least  three  independent  experiments. 
*Significantly different from control condition (p-value ≤ 0.05, ANOVA, Dunnett’s post- 
hoc test). 

 
 

ESM FIG 5. Protective effect of miR-132 overexpression and miR-184 inhibition on 
palmitate- or cytokine-induced apoptosis. MIN6B1 cells transfected with miR-132 
mimic, anti-miR-184 or the respective controls were exposed for 48 h with (white bars) 
or without (black bars) 0.5 mmol/l palmitate coupled to 0.5 % BSA (A) or for 24h with 
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(cross-hatched bars) or without (black bars) a mix of pro-inflammatory cytokines (B). 
Apoptosis was assessed 48 h post-transfection by counting the fraction of cells displaying 
pycnotic nuclei after Hoechst staining. The results correspond to the mean ± SD of four 
to six independent experiments. *Significantly different from control cells treated with 
the pro-apoptotic stimuli (p-value ≤ 0.05, ANOVA, Dunnett’s post-hoc test). 

 

 
ESM FIG 6. Potential targets of miR-199a-3p and miR-132. MIN6B1 cells were 
transfected with the indicated miRNA mimics. Two days later, the cells were 
homogenized and the lysates analyzed by Western blotting with antibodies against 
mTOR and cMET (A), GSK-3β (B) and granuphilin (C). The figure shows representative 
blots and band quantification from at least 3 independent experiments (means ± SEM). 
Protein levels were normalized to tubulin and expressed as fold change over control. 
*Significantly different from control condition (p-value ≤ 0.05 by ANOVA analysis and 
Dunnett’s post-hoc test). 
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Nesca et al. ESM Fig 1 
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