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Abstract  

Endoplasmic reticulum (ER) stress, caused by perturbations in ER homeostasis, activates an 

adaptive response termed the unfolded protein response (UPR) whose function is to resolve ER 

stress. If unsuccessful the UPR initiates a pro-apoptotic program to eliminate the 

malfunctioning cells from the organism. It is the activation of this pro-apoptotic UPR in 

pancreatic β-cells that has been implicated in the onset of type 2 diabetes and thus, in this 

context, is considered a maladaptive response. However, there is growing evidence that β-cell 

death in type 2 diabetes may not be caused by a maladaptive UPR but by the inhibition of the 

adaptive UPR. In this review, we discuss the evidence for a role of the UPR in β-cell 

dysfunction and death in the development of type 2 diabetes and ask the question: Is β-cell 

dysfunction the result of a maladaptive UPR or a failure of the UPR to adequately adapt? The 

answer to this question is critically important in defining potential therapeutic strategies for the 

treatment and prevention of type 2 diabetes. In addition, we discuss the potential role of the 

adaptive UPR in staving off type 2 diabetes by enhancing β-cell mass and function in response 

to insulin resistance. 

 

Introduction 

The endoplasmic reticulum (ER) is an extensive network of tubular membranes within the 

cytoplasm of the cell that serves as a site for the synthesis of lipids, phospholipids, steroids and 

almost all secreted and membrane proteins. Thus the maintenance of the ER is essential for 

preserving cellular function and viability. Disruption in ER homoeostasis caused by, for 

example, the depletion of ER calcium, perturbations in the ER redox state and/or the 

accumulation of mis-folded proteins within the ER results in what is commonly referred to as 

‘ER stress’ Footnote 1. This stress is sensed by ER transmembrane proteins which activate the 

unfolded protein response (UPR); an adaptive response whose function is to restore ER 
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homeostasis and thus alleviate ‘ER stress’ (Figure 1) (for detailed reviews please see (1–4)). 

This is achieved by: 1) decreasing ER synthetic load through inhibiting protein synthesis; 2) 

clearing the ER of misfolded proteins by increasing the expression of components of ER 

associated degradation (ERAD), which translocates mis-folded proteins out of the ER for 

subsequent proteosomal degradation and; 3) enhancing the synthesis and folding capacity of 

the ER by stimulating an increase in both ER mass and function.  

The canonical transducers of the UPR are three ER transmembrane proteins: PKR-like ER 

kinase (PERK), a serine threonine kinase; inositol requiring enzyme 1 (IRE1) which has both 

serine-threonine kinase and RNA endonuclease activity and; activating transcription factor 6 

(ATF6) (Figure 1). PERK phosphorylates the alpha subunit of eukaryotic translation initiation 

factor 2 (eIF2α) (5,6) and in vitro can phosphorylate NF-E2-related transcription factor (Nrf2) 

(7); although there is limited evidence that Nrf2 can be  phosphorylated by PERK in vivo. The 

phosphorylation of eIF2α inhibits protein synthesis thus reducing ER protein folding load. 

However, it also promotes an increase protein translation from a subset of mRNAs including 

that encoding activating transcription factor 4 (ATF4) footnote 2 (8–10), which increase in the 

expression of mRNAs involved in amino acid metabolism, maintaining redox state and 

combating oxidative stress (11). There are two isoforms of IRE1 in mammalian cells: IRE1α 

and IRE1β (for review see (12)) although most research investigating the role of IRE1 in the 

UPR has focused on IRE1α. IRE1α catalyses the removal of a 26bp sequence from the mRNA 

encoding the b-zip transcription factor XBP1 (X-box binding protein-1), resulting in a frame 

shift and the production of a transcriptionally active ‘spliced’ form of XBP1 (XBP1s) (12,13) 

. XBP1s enhances the expression of mRNAs encoding proteins that increase folding capacity, 

such as the ER chaperones BiP and GRP94, and promote ERAD, such as ER-degradation 

enhancing α-mannosidase-like protein (EDEM) (14). In β-cells IRE1α/XBP1 promotes insulin 

stimulated proinsulin synthesis (15,16). Although there are also two isoforms of ATF6, ATF6α 
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and ATF6β, it is ATF6α which has been implicated in UPR induction. ATF6α activation is 

initiated by the unmasking of a golgi localisation signal by the dissociation of BiP. This allows 

ATF6 to translocate to the golgi where it is cleaved by site-1 protease (S1P) and Site-1 protease 

(S2P) resulting in the release of a 50kD N-terminal fragment (p50) encoding a bZIP 

transcription factor. P50 has overlapping and compensatory functions to that of XBP1s (17).  

If the activation of the UPR is unable to restore ER homeostasis, the UPR switches from an 

adaptive to a pro-apoptotic program mediated primarily by the chronic activation of IRE1α 

and/or PERK (3,12). Chronic PERK activation causes the ATF4 dependent increase in the 

expression of the pro-apoptotic protein C/EBP homologous protein (CHOP), otherwise known 

as DNA damage-inducible transcript 153 (GADD153) and DDIT3. Chronic IRE1α activation 

leads to the recruitment of TNF receptor associated factor 2 (TRAF2) (18) and the activation 

of c-Jun terminal Kinase (JNK) and p38 MAP kinases (18), both of which increases the 

expression of pro-apoptotic proteins. Prolonged IRE1α activation also promotes apoptosis by 

degrading mRNAs encoding essential cell-survival proteins through a process called regulated 

IRE1α-dependent decay or RIDD (19). In addition, both PERK and IRE1α can promote the 

expression of pro-inflammatory cytokines (20–22). This pro-apoptotic response is important in 

clearing mal-functioning cells from the organism. However, the death of non-replenishing cells 

that play a critical function, such as pancreatic β-cells, can have deleterious consequences on 

the organism and thus in this specific context the UPR is maladaptive (defn: an adaptation 

more harmful than helpful to the organism)Footnote 3. It is this feature of the UPR that has gained 

it a great deal of notoriety in its proposed role in the pathogenesis of type 2 diabetes, the focus 

of this review.  

ER stress and the UPR in the development of β-cell dysfunction in type 2 diabetes.  

Obesity is often associated with a decrease in insulin sensitivity in skeletal muscle, liver, and 

adipose tissues. Yet the majority of people who are obese and insulin resistant do not develop 
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diabetes. This is due to a compensatory increase in insulin secretion maintained through an 

increase in both β-cell function and mass (23). This is referred to as β-cell adaptation or β-cell 

compensation and there is mounting evidence that ‘ER stress’ and the induction of an adaptive 

UPR play an important role in this. However, if the β-cells are unable to adequately compensate 

and/or are unable to sustain a compensatory phenotype, this leads to relative insulin deficiency 

and ultimately to the onset of diabetes. This ‘failure’ of the β-cells is initially characterised by 

the development of β-cell dysfunction exemplified by a loss of first phase insulin secretion and 

defective proinsulin processing but ultimately by a decrease in β-cell mass primarily due to β-

cell death. It has been proposed that this deterioration in β-cell function and loss of viability is 

caused by the rate of proinsulin synthesis exceeding the processing and folding capacity of the 

ER, leading to the accumulation of unfolded/unprocessed proinsulin (1,6,24,25) resulting in 

chronic ER stress and the activation of a proapoptotic UPR.  However, it has also been 

proposed, based on experimental evidence, that ER stress in pancreatic β-cells can be caused 

by: the formation of islet amyloid, a common feature of human type 2 diabetes;  the chronic 

exposure of pancreatic β-cells to elevated levels of free fatty acids and/or glucose, a hallmark 

of obesity and insulin resistance, or/and; elevated levels of pro-inflammatory cytokines, 

another common feature of obesity (26–29).  

β-cell compensation: a positive role for the UPR. With increased demand for insulin there is 

a need to increase secretory capacity by increasing both the mass of β-cells and the processing 

capacity of individual β-cells to synthesise and secrete insulin. Importantly, there is evidence 

that the UPR plays a positive role in these important compensatory adaptations. Transgenic 

animal models in which the UPR is compromised provide evidence that the UPR is important 

in β-cell compensation. For example, β-cell and hypothalamic IRE1α knock-out (KO) mice 

when placed on a high fat diet (HFD) to promote obesity and insulin resistance have reduced 

β-cell mass due to a reduced rate of β-cell replication, possibly caused by a decrease in XBP1s 
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dependent expression of cyclin-D1, a critical regulator of cell cycle progression (30). However, 

these results are yet to be confirmed using a β-cell specific IRE1α knock-out (KO) mice. 

 As IRE1α/XBP1 is also required for glucose-stimulated insulin synthesis (15,16) increased 

activation through this pathway may be important in increasing β-cell function. ATF6α may 

also be important in β-cell compensation as ATF6α null mice have exacerbated glucose 

intolerance when placed on a HFD due to a reduction in insulin secretion compared to their 

wild type HFD fed controls (31). Moreover, in vitro studies on dispersed mouse or human islets 

indicate that increased β-cell proliferation in response to an increase in insulin demand is 

mediated by the activation of ATF6 (32). However, β-cell specific knock-out of ATF6α in mice 

has no discernible effect on β-cell development or function (33) and human carriers of Atf6α 

‘hypomorphic’ mutations have only been characterized to have achromatopsia, a cone 

photoreceptor defect (34). Thus the role of ATF6α in β-cell function is unclear.  

β-cell specific ablation of PERK in mice results in the development of diabetes (6,35), likely 

due to a reduction in  β-cell proliferation and neonatal β-cell expansion (35), whereas the 

conditional deletion of PERK in adult mice has been reported to cause increased β-cell death 

(32). However, PERK’s role in β-cell compensation in these transgenic mouse models has not 

been explored, although mice carrying a non-phosphorylatable mutant of eIF2α, PERK’s 

primary and perhaps only substrate, in β-cells develop glucose intolerance due to β-cell failure 

likely caused by an inability to mount an effective UPR (25).  

Studies of rodent models of obesity and insulin resistance also provide evidence that ER stress 

and the activation of an adaptive UPR are important in β-cell compensation (Table 1). ob/ob 

mice are leptin deficient and consequently rapidly become obese and severely insulin resistant 

but do not develop diabetes due to successful β-cell compensation sustained through an 

increase in both β-cell function and mass. In islets isolated from these mice, the expression of 

markers of an adaptive UPR increase between 6 and 16 weeks of age (36) and this is 
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concomitant with an increase in β-cell mass and function. Likewise, the islets isolated from 

Zucker and female Zucker Diabetic Fatty (ZDF) rats or pre-diabetic db/db mice, genetic models 

of obesity and β-cell compensation, have increased expression of markers of the adaptive UPR 

compared to their lean controls (36,37). The story is similar with high fat diet (HFD) fed mice, 

considered a more physiologically relevant model of insulin resistance-associated β-cell 

compensation (38), as islets isolated from HFD-fed mice also have increased expression of 

markers of an adaptive UPR compared to their lean controls (29,39). Interestingly, increased 

CHOP expression is observed in many of these models of β-cell   adaptation (Table 1), 

indicating that levels of CHOP expression per se is a poor marker of a maladaptive UPR Footnote 

2. 

The activation of the UPR in all these animal models is presumably in response to an increase 

in insulin resistance and the demand for insulin. Congruent with this presumption 

hyperglycemia in Wistar rats, induced by glucose infusion, activates an adaptive UPR in islets 

as determined by increased expression of XBP1s and the ER chaperones BiP and GRP94 (40). 

Similarly, mild hyperglycemia imposed on human islets when transplanted into mouse 

recipients, also results in the activation of an adaptive UPR (41). These effects on the UPR are 

likely due to an increased demand for insulin rather than hyperglycemia per se (32,42). Indeed, 

a reduction in insulin synthesis has been shown to reduce ER stress in mice (42). 

The activation of an adaptive UPR increases insulin processing and secretory capacity and 

there is good evidence to support the notion that this protects β-cells from the detrimental 

effects of ER stress. For example, the overexpression of the ER chaperone BiP in β-cells 

protects mice against high-fat-diet-induced diabetes (39). Conversely a reduction in BiP 

expression as a result of CEBPβ-mediated down-regulation of ATF6 is associated with diabetes 

(43). Moreover, administration of pharmacological chaperones such as TUCDA and PBA and, 

the more recently discovered, azoramide can restore rodent islet function both in vitro and in 
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vivo (32,36,40,44–46). In humans, PBA has also been shown to partially alleviate lipid-induced 

β-cell dysfunction (47).  

β-cell dysfunction and death in type 2 diabetes: Maladaptation or a failure to adapt? 

Pharmacological induction of ER stress in both clonal pancreatic β-cell lines and human or 

rodent islets of Langerhans, using agents such as thapsigargin or tunicamycin, results in β-cell 

death (48–50). Similarly, incubation of clonal β-cell lines or isolated islets with the long-chain 

saturated free fatty acid palmitate also causes ER stress, UPR activation and ultimately cell 

death (50–53). In vivo, the expression of mis-folding mutants of insulin that cause chronic ER 

stress also cause β-cell death in mice and in humans resulting in permanent neonatal diabetes 

(54). CHOP clearly plays an important role in ER stress induced β-cell death (26,55,56). For 

example, in the Akita mouse, a model of diabetes that expresses a mis-folding mutant of insulin 

resulting in chronic ER stress, the ablation of CHOP delays diabetes onset (56,57). In summary 

chronic unresolvable ER stress in vitro or in vivo can cause β-cell dysfunction and death 

through the activation of a proapoptotic UPR. Yet, there is limited evidence that, in the 

development of type 2 diabetes, β-cell dysfunction and death is caused by chronic ER stress 

and the induction of a proapoptotic UPR. db/db mice, a well characterised model of type 2 

diabetes, are defective in leptin signalling and as a consequence rapidly develop obesity and 

insulin resistance. Despite initial β-cell compensation these mice develop diabetes due to a 

decline in β-cell function and mass. Surprisingly the expression of XBP1s and ATF4, proximal 

markers of IRE1 and PERK activation respectively and surrogate markers of ER stress are 

reduced in islets isolated from diabetic 16 week old db/db mice compared to their pre-diabetic 

6 week old controls (36). Similarly, in islets isolated from diabetic HFD-fed obese female 

Zucker Diabetic Fatty rat (HFD-fZDF), another well characterised rodent model of type 2 

diabetes, there is no detectable increase in the phosphorylation status of eIF2α and IRE1, 

compared to their age-matched obese pre-diabetic fZDF rats (37). In addition, the expression 
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of markers of an adaptive UPR are also either significantly decreased or show a tendency 

towards a decrease in animal models of diabetes and surprisingly this is invariably associated 

with no change or a decrease in CHOP expression (an indicator of the activation of a 

proapoptotic UPR) (36,37) (Table 1).  

Tellingly, and in line with what was observed in studies using rodents, the expression of 691 

genes out of 692 ER- associated genes, many of which are markers of ER stress and the UPR, 

were unchanged in β-cell enriched samples isolated from diabetic human subjects compared to 

BMI matched non-diabetic controls (58). Although, ER distension, a morphological indicator 

of ER stress, was detected in β-cells isolated from diabetic subjects (58). Interestingly, the 

expression of BiP and XBP1s as well as the expression of CHOP is lower in cultured islets 

isolated from type 2 diabetics compared to those isolated from non-diabetics (58). Similarly, 

in a separate study, the expression of XBP1s, ATF6 and the phosphorylation of eIF2α were all 

found to be decreased in islets within pancreata isolated from type 2 diabetics compared to 

non-BMI matched non-diabetic controls (59). However, increased nuclear localisation of 

CHOP has been reported in islets from type 2 diabetics compared to BMI matched non-diabetic 

subjects (60). Given the challenges associated with these types of studies using human tissue 

it is difficult to interpret the data and thus reach a conclusion with any confidence. However, 

evidence for chronic ER stress and/or activation of a proapoptotic UPR in islets from diabetic 

subjects is clearly limited. 

There is considerable evidence that a failure to mount an effective UPR has marked deleterious 

consequences to both β-cell function and viability. For example, Wollcott-Rallison syndrome, 

a rare human autosomal recessive genetic disorder caused by the impairment or loss of function 

mutations in PERK, is characterised by early onset diabetes due to pancreatic β-cell failure 

(61). Similarly, the ablation of PERK in mice results in the selective death of β-cells and the 

development of diabetes (24). Likewise, conditional deletion of IRE1α from the β-cells of mice 
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results in glucose intolerance due to a reduction in insulin content(15,30,62) and β-cell failure, 

primarily due to reduced anti-oxidative capacity (15). Increased unspliced XBP1 (XBP1s) protein 

may also play a role as it has been reported to inhibit ER function (63) and autophagy (64). 

β-cells from autophagy-deficient mice also have a compromised UPR and, when crossed onto 

ob/ob mice, develop diabetes due to ineffective β-cell compensation (65). This correlates with 

a reduction in the adaptive UPR and surprisingly a decrease in the expression of pro-apoptotic 

CHOP (65), a classical although non-specific marker of chronic ER stress Footnote 2. A decrease 

in ER folding capacity by the genetic ablation or reduction of the expression of ER chaperones 

such as p58ipk and BiP in β-cells can also lead to β-cell dysfunction and death (39,66).  

Interestingly, β-cells of mice carrying a non-phosphorylatable form of eIF2α and hence have a 

defective UPR develop ER stress and death coincident with the induction of oxidative stress 

(20) as do mice deleted for the ER co-chaperone P58IPK (66). Deletion of IRE1α in β-cells also 

leads to increased oxidative stress and the development of β-cell dysfunction (15). Notably the 

administration of anti-oxidants reduces ER stress in vivo and preserves β-cell function in mouse 

models of diabetes (40,66,67). Thus a decrease in the UPR activation decreases β-cell 

resistance to oxidative stress. In addition, β-cell damage and death caused by, for example, 

increased oxidative stress would inevitably lead to inflammation which can itself induce both 

oxidative and ER stress (29) and thus exacerbate the development of β-cell dysfunction and 

death (Figure 2).  

The decrease in the adaptive UPR observed in β-cells from diabetic animals could be a 

consequence of hyperglycemia as the expression of many adaptive UPR genes including the 

ER chaperones BiP and Grp94 are down-regulated in mouse islets transplanted into diabetic 

mice compared to those transplanted in non-diabetic control animals (68). Furthermore, 

normalisation of glycaemia in these diabetic mice restores the expression of markers of an 

adaptive UPR in the transplanted islets. Thus it is possible that chronic hyperglycemia not only 
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increases the demand for insulin resulting in the activation of the UPR but ultimately 

compromises the adaptive UPR. There is evidence from studies of db/db mice that the 

activation of JNK may play an important role in switching off an adaptive UPR (69). Decreased 

expression of markers of an adaptive UPR are coincident with increased JNK activation in 

islets from db/db mice and the inhibition of JNK in islets isolated from db/db mice improves 

adaptive UPR gene expression and reduces cell death (69). CHOP may also play a role in 

inhibiting the adaptive response as mice deleted of Chop display improved glycaemic control 

and expanded β-cell mass in genetic and diet-induced models of insulin resistance and this is 

associated with increased expression of adaptive UPR genes (67). Thus, the balance between 

the adaptive UPR and CHOP may be critically important in the regulation of β-cell function 

and survival during ER stress (Figure 2). 

Genetic evidence that a defective UPR may be an important predisposing factor for the 

development type 2 diabetes in humans is somewhat limited although genome wide association 

studies (GWAS) have implicated polymorphisms within the Atf6α gene with type 2 diabetes 

in both Pima Indians and Dutch Caucasians (70,71). Moreover, polymorphisms within the 

Wolfram syndrome 1 (WFS1) gene, a negative regulator of ER stress (72),  has also been 

associated with increased risk of type 2 diabetes (73). 

 

Conclusions and future perspectives. There is mounting evidence that β-cell dysfunction and 

death in type 2 diabetes is caused by the inactivation of the UPR and, as a consequence, the 

failure of the β-cell to adequately adapt rather than the more commonly proposed model of 

chronic ER stress and the activation of a proapoptotic UPR. Although chronic unresolvable ER 

stress can lead to β-cell death through activation of a proapoptotic UPR, which may be 

beneficial under certain physiological or pathological conditions, it is unclear as to whether β-

cells are exposed to such severe stress in type 2 diabetes. During the development of type 2 
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diabetes, islets are subjected to a slow and gradual increase in the demand for insulin with 

obesity and decreasing insulin sensitivity and this occurs over several years. It is likely that this 

translates into cycles of UPR activation and adaptation with relatively small changes in demand 

provoking a transient and subtle activation of an adaptive UPR. This would result in small but 

effective increases in ER folding and processing capacity thus alleviating ER stress. 

 

Despite clear evidence for the activation of an adaptive UPR in both obese insulin resistant 

rodents and humans, the evidence that β-cell failure and death is mediated by the activation of 

a proapoptotic UPR is limited. However, there is evidence for a decrease in the expression of 

markers of an adaptive UPR in islets undergoing β-cell failure in rodent models of type 2 

diabetes and in human subjects with type 2 diabetes. Moreover, UPR dysfunction is known to 

lead to β-cell dysfunction and/or the inability of β-cells to adequately compensate in the face 

of an increase in the demand for insulin. Thus β-cell dysfunction and death in type 2 diabetes 

may well be caused by a failure of the UPR to adequately adapt rather than the activation of a 

proapoptotic, and in the context, maladaptive UPR Footnote 3. However, further investigation is 

required to establish this.  

  

As much of the work on the role of ER stress in β-cell failure in type 2 diabetes has been 

conducted in rodent islets it is important to consider whether there are significant differences 

between how rodent and human islets respond to ER stress. Based on several in vitro studies it 

is unlikely that there are fundamental differences in  the mechanism of UPR activation or in 

their resilience to ER stress (26,50,74). However, one important difference, that may well 

impact on islet survival, are their ability to adapt to increased demand (for reviews see (75,76)). 

Rodent β-cell mass readily increases in response to increased demand primarily through 

proliferation, thus decreasing insulin secretory demand per β-cell and presumably relieving ER 
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stress. Indeed, decreased insulin production relieves ER stress and interestingly promotes β-

cell replication in mice (42). In contrast, although human islet mass has been shown to increase 

in adults who are obese these changes are comparatively small compared to the changes 

observed in mice and this is primarily mediated by an increase β-cell size rather than number 

(77). Thus one may predict that human β-cells are more likely to be subjected to a 

comparatively greater demand for insulin and thus be more susceptible to ER stress, which in 

turn may lead to a greater propensity to develop β-cell dysfunction and death. 

Other important unresolved questions are: what leads to the failure of the adaptive UPR and: 

If β-cell death is not caused by the activation of a proapoptotic UPR then what is it caused by? 

There is evidence that ’UPR failure’ may be caused by the activation of stress-activated 

signalling pathways, whereas β-cell death appears to be mediated by a culmination of stresses 

of which oxidative stress plays a particularly critical role. As there have been a number of 

reports demonstrating the importance of the UPR in limiting oxidative stress (e.g.(11,15,25)) 

it is not surprising that one consequence of UPR failure is an increase in oxidative stress. 

Notably, the administration of anti-oxidants reduce ER stress and preserve β-cell function 

(40,66,67) and thus have therapeutic potential. Another important question is: Is it possible to 

intervene therapeutically to promote further adaptation? Clearly increasing ER folding capacity 

through the administration of pharmacological chaperones in rodent models of diabetes has 

beneficial effects (32,36,40,44–46,78) and there is some evidence that it is also beneficial in 

humans (47). Thus the identification and an evaluation of the efficacy of drugs that increase 

ER folding capacity and/or reduce oxidation stress is an important avenue of pharmacological 

exploration. 

 

Footnotes.  
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1. Experimentally ER stress is most often defined by its consequences. That is the 

morphological distension of the ER and/or the activation of the unfolded protein response 

(described below). Thus this is not a measurement of ER stress per se but that the cells have 

encountered or are encountering ER stress. Unfortunately ‘ER stress’ infers a 

pathophysiological perturbation of the ER despite the fact that physiological changes in ER 

homeostasis also activate the UPR. This causes much confusion as experimental evidence of 

UPR activation is often provided as evidence of pathology.  

 

2. Stresses other than ER stress caused by, for example, nutrient limitation, infection, 

inflammation, increased reactive oxygen species and/or DNA damage can also increase ATF4 

expression through increased phosphorylation of eIF2α mediated by one of three alternative 

eIF2α kinases namely GCN2, HRI, and PKR. Thus it is worth noting that the phosphorylation 

of eIF2α or an increase in the expression of its downstream effectors such as ATF4 and CHOP 

is not, in and of itself, evidence for UPR activation or indeed ‘ER stress’.  

 

3. It is conceivable that if cells were irreversibly dysfunctional then their elimination would be 

considered beneficial. This may be the case with some β-cells in the latter stage of type 2 

diabetes but there is no clear evidence for this. On the other hand, many studies have 

demonstrated the reversibility of β-cell dysfunction in type 2 diabetes, including with bariatric 

surgery (79) and the normalisation of glycemia with intensive insulin treatment (80,81) or 

pharmacotherapy (82) . Thus, rather than terminally dysfunctional, β-cells in type 2 diabetes 

likely represent a functional reserve. Therefore in this context, the elimination of dysfunctional 

β-cells under chronic ER stress conditions is defined as maladaptive.  
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Table 1. Studies in which changes in ER stress / UPR activation were determined in animal 

models of insulin resistance and type 2 diabetes 

 
ANIMAL MODELS OF INSULIN RESISTANCE AND β-CELL COMPENSATION 
Model Evidence for ER 

stress/on-going UPR 
activation  

Markers of an  
Adaptive UPR 

Maladaptive UPR 
(CHOP expression) 

Prediabetic db/db 
mouse (6 wks) (36)  

 XBP1s 
 

 BiP, p58, Erp72, 
Fkbp11, Grp94  

 

Zucker fatty Rat (37)   BiP,HYOU1, 
FKBP12 

 

fZDF rat (37)   BiP   
HFD-fed mouse 
(29,39,83) 

 XBP1s (29,83) 
   P-eIF2 (39) 

 BiP (29,39) 
ND (83) 

 ND (29) 
 (83)    (39) 

ob/ob mouse (36)  XBP1s   BiP, p58, Erp72, 
Fkbp11, Grp94 

ND 

HFD-fed Rats (84)  P-PERK  BiP ND 
 
ANIMAL MODELS OF β-CELL FAILURE AND TYPE 2 DIABETES 
Model ER stress/UPR 

activation 
Markers of an 
Adaptive UPR 

Maladaptive UPR 
(CHOP expression) 

db/db mouse (16 
wks) 
(36) 

 XBP1s   BiP, Grp94, Erp72, 
Fkbp11 compared to 
levels in pre-diabetic 
mice 

 compared to levels 
in pre-diabetic mice  

HFD-fZDF rat (37)    P-eIF2a, P-IRE1    /   
ND = No data 
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Figure Legends 

Figure 1. A simplified overview of the adaptive UPR. PERK, IRE1 and ATF6 signal to the 

nucleus through the action of the transcription factors ATF4, XBP1s and ATF6 which bind to 

response elements (e.g. the antioxidant response elements (ARE), amino acid response element 

(AARE), unfolded protein response element (UPRE), ER stress response element (ERSE)) 

within promoters to induce transcription of mRNAs whose products are important in increasing 

ER folding capacity, increasing ERAD and reducing oxidative stress.  

 

Figure 2. Schematic showing the role of the UPR in β-cell compensation or failure in type 

2 diabetes. An increase in the demand for insulin can causes ER and oxidative stress. This 

activates an adaptive UPR which, if effective, relieves stress and promotes β-cell adaptation. 

However, failure to mount a successful UPR can result in increased ER and oxidative stress 

which can lead to inflammatory response, all of which can promote the development of β-cell 

dysfunction and death leading to hyperglycemia. Hyperglycemia promotes oxidative stress, 

inflammation and ER stress. ER stress can promote oxidative stress and inflammation, 

inflammation can promote ER stress and oxidative stress and oxidative stress can promote ER 

stress and inflammation. Thus a viscous cycle ensures ultimately resulting in reduced β-cell 

mass and the onset of diabetes. 
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