89 research outputs found

    High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome

    Get PDF
    International audienceINTRODUCTION: The current study has addressed the presence and the cellular origin of microparticles (MP) isolated from bronchoalveolar lavage (BAL) fluid and from blood samples from patients with acute respiratory distress syndrome (ARDS). Their prognostic interest was also investigated. METHODS: Fifty-two patients were included within the first 24 hours of ARDS. They were compared to spontaneous breathing (SB) and ventilated control (VC) groups. Bronchoalveolar lavage (BAL) and blood samples were obtained on Day 1 and Day 3 in an ARDS group. Leukocyte microparticles (LeuMP), neutrophil microparticles (NeuMP), endothelial microparticles (EMP), and platelet microparticles (PMP) were measured in arterial blood and in BAL samples by flow cytometry. Mortality from all causes was recorded at Day 28. RESULTS: All MP subpopulations were detected in BAL. However, only LeuMP and NeuMP were elevated in ARDS patients compared to the SB group (P = 0.002 for both). Among ARDS patients, higher levels of LeuMP were detected in blood (Day 1) and in BAL (Day 3) in survivors as compared with the non survivors. Circulating LeuMP >60 elements/microliter detectable on Day 1 of ARDS, was associated with a higher survival rate (odds ratio, 5.26; 95% confidence interval, 1.10 to 24.99; P = 0.037). CONCLUSIONS: The identification of the cellular origin of microparticles at the onset of ARDS has identified LeuMP as a biomarker of prognostic significance. The higher levels of LeuMP in survivors could be associated with a protective role of this MP subpopulation. This hypothesis needs further investigations

    Ticagrelor attenuates the increase of extracellular vesicle concentrations in plasma after acute myocardial infarction compared to clopidogrel

    Get PDF
    Background Platelet P2Y12 antagonist ticagrelor reduces mortality after acute myocardial infarction (AMI) compared to clopidogrel, but the underlying mechanism is unknown. Because activated platelets, leukocytes, and endothelial cells release proinflammatory and prothrombotic extracellular vesicles (EVs), we hypothesized that the release of EVs is more efficiently inhibited by ticagrelor compared to clopidogrel. Objectives We compared EV concentrations and EV procoagulant activity in plasma of patients after AMI treated with ticagrelor or clopidogrel. Methods After percutaneous coronary intervention, 60 patients with first AMI were randomized to ticagrelor or clopidogrel. Flow cytometry was used to determine concentrations of EVs from activated platelets (CD61(+), CD62p(+)), fibrinogen(+), phosphatidylserine (PS+), leukocytes (CD45(+)), endothelial cells (CD31(+), 146(+)), and erythrocytes (CD235a(+)) in plasma at randomization, after 72 hours and 6 months of treatment. A fibrin generation test was used to determine EV procoagulant activity. Results Concentrations of platelet, fibrinogen(+), PS+, leukocyte, and erythrocyte EVs increased 6 months after AMI compared to the acute phase of AMI (P = .17). Conclusions Ticagrelor attenuates the increase of EV concentrations in plasma after acute myocardial infarction compared to clopidogrel. The ongoing release of EVs despite antiplatelet therapy might explain recurrent thrombotic events after AMI and worse clinical outcomes on clopidogrel compared to ticagrelor.Peer reviewe

    Randomized controlled trial protocol to investigate the antiplatelet therapy effect on extracellular vesicles (AFFECT EV) in acute myocardial infarction

    Get PDF
    Activated platelets contribute to thrombosis and inflammation by the release of extracellular vesicles (EVs) exposing P-selectin, phosphatidylserine (PS) and fibrinogen. P2Y12 receptor antagonists are routinely administered to inhibit platelet activation in patients after acute myocardial infarction (AMI), being a combined antithrombotic and anti-inflammatory therapy. The more potent P2Y12 antagonist ticagrelor improves cardiovascular outcome in patients after AMI compared to the less potent clopidogrel, suggesting that greater inhibition of platelet aggregation is associated with better prognosis. The effect of ticagrelor and clopidogrel on the release of EVs from platelets and other P2Y12-exposing cells is unknown. This study compares the effects of ticagrelor and clopidogrel on (1) the concentrations of EVs from activated platelets (primary end point), (2) the concentrations of EVs exposing fibrinogen, exposing PS, from leukocytes and from endothelial cells (secondary end points) and (3) the procoagulant activity of plasma EVs (tertiary end points) in 60 consecutive AMI patients. After the percutaneous coronary intervention, patients will be randomized to antiplatelet therapy with ticagrelor (study group) or clopidogrel (control group). Blood will be collected from patients at randomization, 48 hours after randomization and 6 months following the index hospitalization. In addition, 30 age- and gender-matched healthy volunteers will be enrolled in the study to investigate the physiological concentrations and procoagulant activity of EVs using recently standardized protocols and EV-dedicated flow cytometry. Concentrations of EVs will be determined by flow cytometry. Procoagulant activity of EVs will be determined by fibrin generation test. The compliance and response to antiplatelet therapy will be assessed by impedance aggregometry. We expect that plasma from patients treated with ticagrelor (1) contains lower concentrations of EVs from activated platelets, exposing fibrinogen, exposing PS, from leukocytes and from endothelial cells and (2) has lower procoagulant activity, when compared to patients treated with clopidogrel. Antiplatelet therapy effect on EVs may identify a new mechanism of action of ticagrelor, as well as create a basis for future studies to investigate whether lower EV concentrations are associated with improved clinical outcomes in patients treated with P2Y12 antagonists.Peer reviewe

    Macrophage IL-1β-positive microvesicles exhibit thrombo-inflammatory properties and are detectable in patients with active juvenile idiopathic arthritis

    Get PDF
    ObjectiveIL-1β is a leaderless cytokine with poorly known secretory mechanisms that is barely detectable in serum of patients, including those with an IL-1β-mediated disease such as systemic juvenile idiopathic arthritis (sJIA). Leukocyte microvesicles (MVs) may be a mechanism of IL-1β secretion. The first objective of our study was to characterize IL-1β-positive MVs obtained from macrophage cell culture supernatants and to investigate their biological functions in vitro and in vivo. The second objective was to detect circulating IL-1β-positive MVs in JIA patients.MethodsMVs were purified by serial centrifugations from PBMCs, or THP-1 differentiated into macrophages, then stimulated with LPS ± ATP. MV content was analyzed for the presence of IL-1β, NLRP3 inflammasome, caspase-1, P2X7 receptor, and tissue factor (TF) using ELISA, Western blot, or flow cytometry. MV biological properties were studied in vitro by measuring VCAM-1, ICAM-1, and E-selectin expression after HUVEC co-culture and factor-Xa generation test was realized. In vivo, MVs’ ability to recruit leukocytes in a murine model of peritonitis was evaluated. Plasmatic IL-1β-positive MVs were studied ex vivo in 10 active JIA patients using flow cytometry.ResultsTHP-1-derived macrophages stimulated with LPS and ATP released MVs, which contained NLRP3, caspase-1, and the 33-kDa precursor and 17-kDa mature forms of IL-1β and bioactive TF. IL-1β-positive MVs expressed P2X7 receptor and released soluble IL-1β in response to ATP stimulation in vitro. In mice, MVs induced a leukocyte peritoneal infiltrate, which was reduced by treatment with the IL-1 receptor antagonist. Finally, IL-1β-positive MVs were detectable in plasma from 10 active JIA patients.ConclusionMVs shed from activated macrophages contain IL-1β, NLRP3 inflammasome components, and TF, and constitute thrombo-inflammatory vectors that can be detected in the plasma from active JIA patients

    Increased serum levels of fractalkine and mobilisation of CD34+CD45− endothelial progenitor cells in systemic sclerosis

    Get PDF
    International audienceBackground: The disruption of endothelial homeostasis is a major determinant in the pathogenesis of systemic sclerosis (SSc) and is reflected by soluble and cellular markers of activation, injury and repair. We aimed to provide a combined assessment of endothelial markers to delineate specific profiles associated with SSc disease and its severity

    Cancer cell–derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo

    Get PDF
    Recent publications have demonstrated the presence of tissue factor (TF)–bearing microparticles (MPs) in the blood of patients suffering from cancer. However, whether these MPs are involved in thrombosis remains unknown. We show that pancreatic and lung cancer cells produce MPs that express active TF and P-selectin glycoprotein ligand 1 (PSGL-1). Cancer cell–derived MPs aggregate platelets via a TF-dependent pathway. In vivo, cancer cell–derived MPs, but not their parent cells, infused into a living mouse accumulate at the site of injury and reduce tail bleeding time and the time to occlusion of venules and arterioles. This thrombotic state is also observed in mice developing tumors. In such mice, the amount of circulating platelet-, endothelial cell–, and cancer cell–derived MPs is increased. Endogenous cancer cell–derived MPs shed from the growing tumor are able to accumulate at the site of injury. Infusion of a blocking P-selectin antibody abolishes the thrombotic state observed after injection of MPs or in mice developing a tumor. Collectively, our results indicate that cancer cell–derived MPs bearing PSGL-1 and TF play a key role in thrombus formation in vivo. Targeting these MPs could be of clinical interest in the prevention of thrombosis and to limit formation of metastasis in cancer patients

    A rare coding mutation in the MAST2 gene causes venous thrombosis in a French family with unexplained thrombophilia: The Breizh MAST2 Arg89Gln variant.

    Get PDF
    Rare variants outside the classical coagulation cascade might cause inherited thrombosis. We aimed to identify the variant(s) causing venous thromboembolism (VTE) in a family with multiple relatives affected with unprovoked VTE and no thrombophilia defects. We identified by whole exome sequencing an extremely rare Arg to Gln variant (Arg89Gln) in the Microtubule Associated Serine/Threonine Kinase 2 (MAST2) gene that segregates with VTE in the family. Free-tissue factor pathway inhibitor (f-TFPI) plasma levels were significantly decreased in affected family members compared to healthy relatives. Conversely, plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in affected members than in healthy relatives. RNA sequencing analysis of RNA interference experimental data conducted in endothelial cells revealed that, of the 13,387 detected expressed genes, 2,354 have their level of expression modified by MAST2 knockdown, including SERPINE1 coding for PAI-1 and TFPI. In HEK293 cells overexpressing the MAST2 Gln89 variant, TFPI and SERPINE1 promoter activities were respectively lower and higher than in cells overexpressing the MAST2 wild type. This study identifies a novel thrombophilia-causing Arg89Gln variant in the MAST2 gene that is here proposed as a new molecular player in the etiology of VTE by interfering with hemostatic balance of endothelial cells

    A compendium of single extracellular vesicle flow cytometry

    Get PDF
    Flow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells. This technical mismatch together with complexity of EV-containing fluids causes limitations and challenges with conducting, interpreting and reproducing EV FCM experiments. To address and overcome these challenges, researchers from the International Society for Extracellular Vesicles (ISEV), International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH) joined forces and initiated the EV FCM working group. To improve the interpretation, reporting, and reproducibility of future EV FCM data, the EV FCM working group published an ISEV position manuscript outlining a framework of minimum information that should be reported about an FCM experiment on single EVs (MIFlowCyt-EV). However, the framework contains limited background information. Therefore, the goal of this compendium is to provide the background information necessary to design and conduct reproducible EV FCM experiments. This compendium contains background information on EVs, the interaction between light and EVs, FCM hardware, experimental design and preanalytical procedures, sample preparation, assay controls, instrument data acquisition and calibration, EV characterization, and data reporting. Although this compendium focuses on EVs, many concepts and explanations could also be applied to FCM detection of other particles within the EV size range, such as bacteria, lipoprotein particles, milk fat globules, and viruses

    Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology

    Get PDF
    Microvesicles are members of the family of extracellular vesicles shed from the plasma membrane of activated or apoptotic cells. Microvesicles were initially characterised by their pro-coagulant activity and described as "microparticles". There is mounting evidence revealing a role for microvesicles in intercellular communication, with particular relevance to hemostasis and vascular biology. Coupled with this, the potential of microvesicles as meaningful biomarkers is under intense investigation. This Position Paper will summarise the current knowledge on the mechanisms of formation and composition of microvesicles of endothelial, platelet, red blood cell and leukocyte origin. This paper will also review and discuss the different methods used for their analysis and quantification, will underline the potential biological roles of these vesicles with respect to vascular homeostasis and thrombosis and define important themes for future research
    corecore