19 research outputs found

    Chiral Perturbation Theory

    Get PDF
    An introduction to the methods and ideas of Chiral Perturbation Theory is presented in this talk. The discussion is illustrated with some phenomenological predictions that can be compared with available experimental results.Comment: 16 pages, 4 Postscript figures, uses epsf.sty. Talk presented at the International Conference on Particle Physics and Astrophysics in The Standard Model and Beyond, Bystra (Poland). Full Postscript file available at http://deneb.ugr.es/papers/ugft57.ps.g

    A variational approach for retrieving ice cloud properties from infrared measurements: application in the context of two IIR validation campaigns

    Get PDF
    Cirrus are cloud types that are recognized to have a strong impact on the Earth-atmosphere radiation balance. This impact is however still poorly understood, due to the difficulties in describing the large variability of their properties in global climate models. Consequently, numerous airborne and space borne missions have been dedicated to their study in the last decades. The satellite constellation A-Train has proven to be particularly helpful to study cirrus on global scale due to such instruments as the Infrared Imaging Radiometer (IIR), which shows great sensitivity to the radiative and microphysical properties of these clouds. This study presents an algorithm that uses thermal infrared measurements to retrieve the optical thickness of cirrus and the effective size of their ice crystals. This algorithm is based on an optimal estimation scheme, which possesses the advantage of attributing precise uncertainties to the retrieved parameters. Two IIR airborne validation campaigns have been chosen as case studies. It is observed that optical thicknesses could be accurately retrieved but that large uncertainties may occur on the effective diameters. Strong agreements have been found between the products of our algorithm when separately applied to the measurements of IIR and of the airborne radiometer CLIMAT-AV, which comforts the results of previous validations of IIR level-1 measurements. Comparisons with in situ observations and with operational products of IIR also show confidence in our results. However, we have found that the quality of our retrievals can be strongly impacted by uncertainties related to the choice of a pristine crystal model and by poor constraints on the properties of possible liquid cloud layers underneath cirrus. Simultaneous retrievals of liquid clouds radiative and microphysical properties or the use of different ice crystal models should therefore be considered to improve the quality of the results

    Comparison of PARASOL Observations with Polarized Reflectances Simulated Using Different Ice Habit Mixtures

    Get PDF
    Insufficient knowledge of the habit distribution and the degree of surface roughness of ice crystals within ice clouds is a source of uncertainty in the forward light scattering and radiative transfer simulations required in downstream applications involving these clouds. The widely used MODerate Resolution Imaging Spectroradiometer (MODIS) Collection 5 ice microphysical model assumes a mixture of various ice crystal shapes with smooth-facets except aggregates of columns for which a moderately rough condition is assumed. When compared with PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) polarized reflection data, simulations of polarized reflectance using smooth particles show a poor fit to the measurements, whereas very rough-faceted particles provide an improved fit to the polarized reflectance. In this study a new microphysical model based on a mixture of 9 different ice crystal habits with severely roughened facets is developed. Simulated polarized reflectance using the new ice habit distribution is calculated using a vector adding-doubling radiative transfer model, and the simulations closely agree with the polarized reflectance observed by PARASOL. The new general habit mixture is also tested using a spherical albedo differences analysis, and surface roughening is found to improve the consistency of multi-angular observations. It is suggested that an ice model incorporating an ensemble of different habits with severely roughened surfaces would potentially be an adequate choice for global ice cloud retrievals

    Polarized light scattering by inhomogeneous hexagonal monocrystals. Validation with ADEOS-POLDER measurements

    Get PDF
    Various in situ measurements of the light-scattering diagram in ice clouds were performed with a new nephelometer during several airborne campaigns. These measurements were favorably compared with a theoretical scattering model called Inhomogeneous Hexagonal Monocrystal (IHM) model. This model consists in computing the scattering of light by an ensemble of randomly oriented hexagonal ice crystals containing spherical impurities of soot and air bubbles. It is achieved by using a combination of ray tracing, Mie theory, and Monte Carlo techniques and enables to retrieve the six independent elements of the scattering matrix. This good agreement between nephelometer measurements and IHM model provides an opportunity to use this model in order to analyze ADEOS-POLDER total and polarized reflectance measurements over ice clouds. POLDER uses an original concept to observe ice cloud properties, enabling to measure reflectances and polarized reflectances, for a given scene, under several (up to 14) viewing directions. A first analysis of ice cloud spherical albedoes over the terrestrial globe for November 10, 1996, and April 23, 1997, shows a rather good agreement between measurements and modeling. Moreover, polarized reflectances are also calculated and show a satisfactory agreement with measurements

    Forum mesurera l'infrarouge lointain Ă©mis par la Terre

    No full text
    International audienc

    A scattering phase function for ice cloud: Tests of applicability using aircraft and satellite multi-angle multi-wavelength radiance measurements of cirrus

    No full text
    International audienceA parametrization of the Henyey-Greenstein scattering phase function is presented for application to aircraft and satellite remote sensing of cirrus-cloud bulk and microphysical properties at non-absorbing and absorbing wavelengths. The phase function is based initially around a non-absorbing laboratory-measured phase function between scattering angles of 30° and 180°, although at scattering angles greater than 95° the phase function is made constant with scattering angle. This 'analytic' phase function has an asymmetry parameter value of 0.80 at non-absorbing wavelengths. This analytic phase function is tested using aircraft-based transmission radiance measurements at the wavelengths of 0.55 Όm, 0.87 Όm, 1.6 Όm and 3.7 Όm between scattering angles of 10° and 120°, and satellite retrievals of cirrus-cloud spherical albedo at the wavelength of 0.67 Όm between scattering angles of 60° and 180°. The analytic phase function reproduces both aircraft and satellite measurements well, and is shown to be a distinct improvement over single-crystal model phase functions representing both small and large crystals in terms of angular scattering pattern and retrieved optical thickness

    Modeling total and polarized reflectances of ice clouds: evaluation by means of POLDER and ATSR-2 measurements

    No full text
    International audienceFour ice-crystal models are tested by use of ice-cloud reflectances derived from Along Track Scanning Radiometer-2 (ATSR-2) and Polarization and Directionality of Earth's Reflectances (POLDER) radiance measurements. The analysis is based on dual-view ATSR-2 total reflectances of tropical cirrus and POLDER global-scale total and polarized reflectances of ice clouds at as many as 14 viewing directions. Adequate simulations of ATSR-2 total reflectances at 0.865 ”m are obtained with model clouds consisting of moderately distorted imperfect hexagonal monocrystals (IMPs). The optically thickest clouds (tau > ~16) in the selected case tend to be better simulated by use of pure hexagonal monocrystals (PHMs). POLDER total reflectances at 0.670 ”m are best simulated with columnar or platelike IMPs or columnar inhomogeneous hexagonal monocrystals (IHMs). Less-favorable simulations are obtained for platelike IHMs and polycrystals (POLYs). Inadequate simulations of POLDER total and polarized reflectances are obtained for model clouds consisting of PHMs. Better simulations of the POLDER polarized reflectances at 0.865 ”m are obtained with IMPs, IHMs, or POLYs, although POLYs produce polarized reflectances that are systematically lower than most of the measurements. The best simulations of the polarized reflectance for the ice-crystal models assumed in this study are obtained for model clouds consisting of columnar IMPs or IHMs

    Potential of Hyperspectral Thermal Infrared Spaceborne Measurements to Retrieve Ice Cloud Physical Properties: Case Study of IASI and IASI-NG

    No full text
    International audienceThe present study aims to quantify the potential of hyperspectral thermal infrared sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and the future IASI next generation (IASI-NG) for retrieving the ice cloud layer altitude and thickness together with the ice water path. We employed the radiative transfer model Radiative Transfer for TOVS (RTTOV) to simulate cloudy radiances using parameterized ice cloud optical properties. The radiances have been computed from an ice cloud profile database coming from global operational short-range forecasts at the European Center for Medium-range Weather Forecasts (ECMWF) which encloses the normal conditions, typical variability, and extremes of the atmospheric properties over one year (Eresmaa and McNally (2014)). We performed an information content analysis based on Shannon’s formalism to determine the amount and spectral distribution of the information about ice cloud properties. Based on this analysis, a retrieval algorithm has been developed and tested on the profile database. We considered the signal-to-noise ratio of each specific instrument and the non-retrieved atmospheric and surface parameter errors. This study brings evidence that the observing system provides information on the ice water path (IWP) as well as on the layer altitude and thickness with a convergence rate up to 95% and expected errors that decrease with cloud opacity until the signal saturation is reached (satisfying retrievals are achieved for clouds whose IWP is between about 1 and 300 g/m2)
    corecore