5,597 research outputs found
High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain
Little is known about the molecular basis of somatosensory mechanotransduction in mammals. We screened a library of peptide toxins for effects on mechanically activated currents in cultured dorsal root ganglion neurons. One conopeptide analogue, termed NMB-1 for noxious mechanosensation blocker 1, selectively inhibits (IC50 1 µM) sustained mechanically activated currents in a subset of sensory neurons. Biotinylated NMB-1 retains activity and binds selectively to peripherin-positive nociceptive sensory neurons. The selectivity of NMB-1 was confirmed by the fact that it has no inhibitory effects on voltage-gated sodium and calcium channels, or ligand-gated channels such as acid-sensing ion channels or TRPA1 channels. Conversely, the tarantula toxin, GsMTx-4, which inhibits stretch-activated ion channels, had no effects on mechanically activated currents in sensory neurons. In behavioral assays, NMB-1 inhibits responses only to high intensity, painful mechanical stimulation and has no effects on low intensity mechanical stimulation or thermosensation. Unexpectedly, NMB-1 was found to also be an inhibitor of rapid FM1-43 loading (a measure of mechanotransduction) in cochlear hair cells. These data demonstrate that pharmacologically distinct channels respond to distinct types of mechanical stimuli and suggest that mechanically activated sustained currents underlie noxious mechanosensation. NMB-1 thus provides a novel diagnostic tool for the molecular definition of channels involved in hearing and pressure-evoked pain
Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions
Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed
New first trimester crown-rump length's equations optimized by structured data collection from a French general population
--- Objectives --- Prior to foetal karyotyping, the likelihood of Down's
syndrome is often determined combining maternal age, serum free beta-HCG,
PAPP-A levels and embryonic measurements of crown-rump length and nuchal
translucency for gestational ages between 11 and 13 weeks. It appeared
important to get a precise knowledge of these scan parameters' normal values
during the first trimester. This paper focused on crown-rump length. ---
METHODS --- 402 pregnancies from in-vitro fertilization allowing a precise
estimation of foetal ages (FA) were used to determine the best model that
describes crown-rump length (CRL) as a function of FA. Scan measures by a
single operator from 3846 spontaneous pregnancies representative of the general
population from Northern France were used to build a mathematical model linking
FA and CRL in a context as close as possible to normal scan screening used in
Down's syndrome likelihood determination. We modeled both CRL as a function of
FA and FA as a function of CRL. For this, we used a clear methodology and
performed regressions with heteroskedastic corrections and robust regressions.
The results were compared by cross-validation to retain the equations with the
best predictive power. We also studied the errors between observed and
predicted values. --- Results --- Data from 513 spontaneous pregnancies allowed
to model CRL as a function of age of foetal age. The best model was a
polynomial of degree 2. Datation with our equation that models spontaneous
pregnancies from a general population was in quite agreement with objective
datations obtained from 402 IVF pregnancies and thus support the validity of
our model. The most precise measure of CRL was when the SD was minimal
(1.83mm), for a CRL of 23.6 mm where our model predicted a 49.4 days of foetal
age. Our study allowed to model the SD from 30 to 90 days of foetal age and
offers the opportunity of using Zscores in the future to detect growth
abnormalities. --- Conclusion --- With powerful statistical tools we report a
good modeling of the first trimester embryonic growth in the general population
allowing a better knowledge of the date of fertilization useful in the
ultrasound screening of Down's syndrome. The optimal period to measure CRL and
predict foetal age was 49.4 days (9 weeks of gestational age). Our results open
the way to the detection of foetal growth abnormalities using CRL Zscores
throughout the first trimester
A 4% Geometric Distance to the Galaxy NGC4258 from Orbital Motions in a Nuclear Gas Disk
The water maser in the mildly active nucleus in the nearby galaxy NGC4258
traces a thin, nearly edge-on, subparsec-scale Keplerian disk. Using the
technique of very long baseline interferometry, we have detected the proper
motions of these masers as they sweep in front of the central black hole at an
orbital velocity of about 1100 km/s. The average maser proper motion of 31.5
microarcseconds per year is used in conjunction with the observed acceleration
of the masers to derive a purely geometric distance to the galaxy of 7.2 +- 0.3
Mpc. This is the most precise extragalactic distance measured to date, and,
being independent of all other distance indicators, is likely to play an
important role in calibrating the extragalactic distance scale.Comment: 11 pages, 3 figures. Accepted for publication in Natur
Mapping Exoplanets
The varied surfaces and atmospheres of planets make them interesting places
to live, explore, and study from afar. Unfortunately, the great distance to
exoplanets makes it impossible to resolve their disk with current or near-term
technology. It is still possible, however, to deduce spatial inhomogeneities in
exoplanets provided that different regions are visible at different
times---this can be due to rotation, orbital motion, and occultations by a
star, planet, or moon. Astronomers have so far constructed maps of thermal
emission and albedo for short period giant planets. These maps constrain
atmospheric dynamics and cloud patterns in exotic atmospheres. In the future,
exo-cartography could yield surface maps of terrestrial planets, hinting at the
geophysical and geochemical processes that shape them.Comment: Updated chapter for Handbook of Exoplanets, eds. Deeg & Belmonte. 17
pages, including 6 figures and 4 pages of reference
Composite Dirac Neutrinos
We present a mechanism that naturally produces light Dirac neutrinos. The
basic idea is that the right-handed neutrinos are composite. Any realistic
composite model must involve `hidden flavor' chiral symmetries. In general some
of these symmetries may survive confinement, and in particular, one of them
manifests itself at low energy as an exact symmetry. Dirac neutrinos are
therefore produced. The neutrinos are naturally light due to compositeness. In
general, sterile states are present in the model, some of them can naturally be
warm dark matter candidates.Comment: 12 pages; Sec. IIC updated; minor corrections; published versio
Exploring haemodynamics of haemodialysis using extrema points analysis model
Background: Haemodialysis is a form of renal replacement therapy used to treat
patients with end stage renal failure. It is becoming more appreciated that
haemodialysis patients exhibit higher rates of multiple end organ damage
compared to the general population. There is also a strong emerging evidence that
haemodialysis itself causes circulatory stress. We aimed at examining
haemodynamic patterns during haemodialysis using a new model and test that
model against a normal control.
Methods: We hypothesised that blood pressures generated by each heart beat
constantly vary between local peaks and troughs (local extrema), the frequency and
amplitude of which is regulated to maintain optimal organ perfusion. We also
hypothesised that such model could reveal multiple haemodynamic aberrations
during HD. Using a non-invasive cardiac output monitoring device (Finometer®) we
compared various haemodynamic parameters using the above model between a
haemodialysis patient during a dialysis session and an exercised normal control after
comparison at rest.
Results: Measurements yielded 29,751 data points for each haemodynamic
parameter. Extrema points frequency of mean arterial blood pressure was higher in
the HD subject compared to the normal control (0.761Hz IQR 0.5-0.818 vs 0.468Hz
IQR 0.223-0.872, P < 0.0001). Similarly, extrema points frequency of systolic blood
pressure was significantly higher in haemodialysis compared to normal. In contrary,
the frequency of extrema points for TPR was higher in the normal control compared
to HD (0.947 IQR 0.520-1.512 vs 0.845 IQR 0.730-1.569, P < 0.0001) with significantly
higher amplitudes.
Conclusion: Haemodialysis patients potentially exhibit an aberrant haemodynamic
behaviour characterised by higher extrema frequencies of mean arterial blood
pressure and lower extrema frequencies of total peripheral resistance. This, in
theory, could lead to higher variation in organ perfusion and may be detrimental to vulnerable vascular beds
Role of the mesoamygdaloid dopamine projection in emotional learning
Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent
Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.
Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing
Social marketing and healthy eating : Findings from young people in Greece
This document is the Accepted Manuscript version. The final publication is available at Springer via http://dx.doi.org/10.1007/s12208-013-0112-xGreece has high rates of obesity and non-communicable diseases owing to poor dietary choices. This research provides lessons for social marketing to tackle the severe nutrition-related problems in this country by obtaining insight into the eating behaviour of young adults aged 18–23. Also, the main behavioural theories used to inform the research are critically discussed. The research was conducted in Athens. Nine focus groups with young adults from eight educational institutions were conducted and fifty-nine participants’ views towards eating habits, healthy eating and the factors that affect their food choices were explored. The study found that the participants adopted unhealthier nutritional habits after enrolment. Motivations for healthy eating were good health, appearance and psychological consequences, while barriers included lack of time, fast-food availability and taste, peer pressure, lack of knowledge and lack of family support. Participants reported lack of supportive environments when deciding on food choices. Based on the findings, recommendations about the development of the basic 4Ps of the marketing mix, as well as of a fifth P, for Policy are proposedPeer reviewe
- …
