34 research outputs found
HIV-1-Infected and Immune-Activated Macrophages Induce Astrocytic Differentiation of Human Cortical Neural Progenitor Cells via the STAT3 Pathway
Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD). In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia) drive central nervous system (CNS) inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS) activated monocyte-derived macrophages (MDM) inhibit human neural progenitor cell (NPC) neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3), a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM) and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM) induced Janus kinase 1 (Jak1) and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP) expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3) decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α) produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In HIVE mice, siRNA control (without target sequence, sicon) pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these observations demonstrate that HIV-1-infected/activated MDM induces NPC astrogliogenesis through the STAT3 pathway. This study generates important data elucidating the role of brain inflammation in neurogenesis and may provide insight into new therapeutic strategies for HAD
Derivation of High Purity Neuronal Progenitors from Human Embryonic Stem Cells
The availability of human neuronal progenitors (hNPs) in high purity would greatly facilitate neuronal drug discovery and developmental studies, as well as cell replacement strategies for neurodegenerative diseases and conditions, such as spinal cord injury, stroke, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Here we describe for the first time a method for producing hNPs in large quantity and high purity from human embryonic stem cells (hESCs) in feeder-free conditions, without the use of exogenous noggin, sonic hedgehog or analogs, rendering the process clinically compliant. The resulting population displays characteristic neuronal-specific markers. When allowed to spontaneously differentiate into neuronal subtypes in vitro, cholinergic, serotonergic, dopaminergic and/or noradrenergic, and medium spiny striatal neurons were observed. When transplanted into the injured spinal cord the hNPs survived, integrated into host tissue, and matured into a variety of neuronal subtypes. Our method of deriving neuronal progenitors from hESCs renders the process amenable to therapeutic and commercial use
LIF-Dependent Signaling: New Pieces in the Lego
LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during the implantation process of embryos, in eutherian mammals, put this cytokine at the core of many studies aiming to understand its mechanisms of action, which could benefit to medical applications. In addition, its conservation upon evolution raised the challenging question concerning the function of LIF in species in which there is no implantation. We present the recent knowledge about the established and potential functions of LIF in different stem cell models, (embryonic, hematopoietic, mesenchymal, muscle, neural stem cells and iPSC). We will also discuss EVO-DEVO aspects of this multifaceted cytokine
A Drosophila-centric view of protein tyrosine phosphatases
AbstractMost of our knowledge on protein tyrosine phosphatases (PTPs) is derived from human pathologies and mouse knockout models. These models largely correlate well with human disease phenotypes, but can be ambiguous due to compensatory mechanisms introduced by paralogous genes. Here we present the analysis of the PTP complement of the fruit fly and the complementary view that PTP studies in Drosophila will accelerate our understanding of PTPs in physiological and pathological conditions. With only 44 PTP genes, Drosophila represents a streamlined version of the human complement. Our integrated analysis places the Drosophila PTPs into evolutionary and functional contexts, thereby providing a platform for the exploitation of the fly for PTP research and the transfer of knowledge onto other model systems
Oligodendrocytes: biology and pathology
Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so
The use of Electrolyte Additives to Improve the High Temperature Resilience of Li-Ion Cells
This viewgraph presentation reviews the use of electrolyte additves to improve the resillience of Lithium ion cells. The objective of this work is to identify lithium-ion electrolytes, which will lead to Li-ion cells with a wide operational temperature range (+60 to -60 C), and to develop Li-ion electrolytes which result in cells that display improved high temperature resilience. Significant improvement in the high temperature resilience of Li-ion cells containing these additives was observed, with the most dramatic benefit being displayed by addition of DMAc. When the electrochemical properties of the individual electrodes were analyzed, the degradation of the anode kinetics was slowed most dramatically by the incorporation of DMAc into the electrolytes. Whereas, the greatest retention in the cathode kinetics was observed in the cell containing the electrolyte with VC added
Analysis of Neuronal and Glial Phenotypes in Brains of Mice Deficient in Leukemia Inhibitory Factor
Leukemia inhibitory factor (LIF) can regulate the survival and differentiation of certain neurons and glial cells in culture. To determine the role of this cytokine in the central nervous system in vivo, we examined the brains of young and adult mice in which the LIF gene was disrupted. Immunohistochemical staining of neurons for choline acetyltransferase, tyrosine hydroxylase, serotonin, parvalbumin, calbindin, neuropeptide Y, vasoactive intestinal polypeptide, and calcitonin gene-related peptide revealed no significant differences between null mutant and wild-type (WT) brains. In contrast, analysis of glial phenotypes demonstrated striking deficits in the LIF-knockout brain. Staining with several anti-glial fibrillary acidic protein (GFAP) antibodies showed that the number of GFAP-positive cells in various regions of the hippocampus in the female mutant is much lower than in the WT. The null male hippocampus also displays a significant, though less marked deficit. The number of astrocytes in the mutant hippocampus, as determined by S-100 staining, is not, however, significantly different from WT. In addition, quantification of immunohistochemical staining of female, but not male, mutants reveals a significant deficit in myelin basic protein content in three brain regions, suggesting alterations in oligodendrocytes as well. Thus, while overall brain histology appears normal, the absence of LIF in vivo leads to specific, sexually dimorphic alterations in glial phenotype
The effect of additives upon the performance of MCMB LiNi xCo 1-xO 2 Li-ion cells containing methyl butyrate-based wide operating temperature range electrolytes
The effect of additives upon the ability of meso-carbon microbead (MCMB) carbon LiNi xCo 1-xO 2 lithium-ion cells containing methyl butyrate-based electrolytes to provide operation over a wide temperature range (-60 to 60°C) was investigated. A number of electrolyte additives were studied, including mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalato borate) (LiBOB). The intent of incorporating these additives into methyl butyrate-based electrolytes is to widen the operating temperature range of these systems, especially at warm temperatures. A number of formulations were investigated in experimental three-electrode MCMB Li xNi yCo 1-yO 2 lithium-ion cells, based on an electrolyte that has previously been demonstrated to provide good low temperature performance (to -60°C), namely 1.00M LiPF 6 in ethylene carbonate (EC) ethyl methyl carbonate (EMC) methyl butyrate (MB) (20:20:60 vv). In addition to studying the charge and discharge behavior of the cells, a number of electrochemical techniques were also employed, including Electrochemical Impedance Spectroscopy (EIS), Tafel polarization and linear polarization to understand the interfacial effects on the intercalation kinetics. © 2012 The Electrochemical Society
A practical synthesis of (R)-(−)-phenylephrine hydrochloride
(R)-(−)-Phenylephrine hydrochloride is a clinically potent adrenergic agent and B-receptor sympathomimetic drug, exclusively marketed in the optically active form. An asymmetric synthesis has been developed with high enantiomeric excess based on hydrolytic kinetic resolution of a styrene oxide derivative using (R,R)-SalenCoIIIOAc complex
Measuring Drug Metabolism Kinetics and Drug–Drug Interactions Using Self-Assembled Monolayers for Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry
The competition of
two drugs for the same metabolizing enzyme is
a common mechanism for drug–drug interactions that can lead
to altered kinetics in drug metabolism and altered elimination rates <i>in vivo</i>. With the prevalence of multidrug therapy, there
is great potential for serious drug–drug interactions and adverse
drug reactions. In an effort to prevent adverse drug reactions, the
FDA mandates the evaluation of the potential for metabolic inhibition
by every new chemical entity. Conventional methods for assaying drug
metabolism (e.g., those based on HPLC) have been established for measuring
drug–drug interactions; however, they are low-throughput. Here
we describe an approach to measure the catalytic activity of CYP2C9
using the high-throughput technique self-assembled monolayers for
matrix-assisted laser desorption-ionization (SAMDI) mass spectrometry.
We measured the kinetics of CYP450 metabolism of the substrate, screened
a set of drugs for inhibition of CYP2C9 and determined the <i>K</i><sub>i</sub> values for inhibitors. The throughput of this
platform may enable drug metabolism and drug–drug interactions
to be interrogated at a scale that cannot be achieved with current
methods