32 research outputs found
Dynamical energy analysis on mesh grids: a new tool for describing the vibro-acoustic response of complex mechanical structures
We present a new approach for modelling noise and vibration in complex mechanical structures in the mid-to-high frequency regime. It is based on a dynamical energy analysis (DEA) formulation which extends standard techniques such as statistical energy analysis (SEA) towards non-diffusive wave fields. DEA takes into account the full directionality of the wave field and makes sub-structuring obsolete. It can thus be implemented on mesh grids commonly used, for example, in the finite element method (FEM). The resulting mesh based formulation of DEA can be implemented very efficiently using discrete flow mapping (DFM) as detailed in [1] and described here for applications in vibro-acoustics
Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causesthe infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformaticstools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection,understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to getinsight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for theroutine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemicand evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets anddevelopment of therapeutic strategies. For each tool, we briefly describe its use case and how it advances researchspecifically for SARS-CoV-2.Fil: Hufsky, Franziska. Friedrich Schiller University Jena; AlemaniaFil: Lamkiewicz, Kevin. Friedrich Schiller University Jena; AlemaniaFil: Almeida, Alexandre. the Wellcome Sanger Institute; Reino UnidoFil: Aouacheria, Abdel. Centre National de la Recherche Scientifique; FranciaFil: Arighi, Cecilia. Biocuration and Literature Access at PIR; Estados UnidosFil: Bateman, Alex. European Bioinformatics Institute. Head of Protein Sequence Resources; Reino UnidoFil: Baumbach, Jan. Universitat Technical Zu Munich; AlemaniaFil: Beerenwinkel, Niko. Universitat Technical Zu Munich; AlemaniaFil: Brandt, Christian. Jena University Hospital; AlemaniaFil: Cacciabue, Marco Polo Domingo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación En Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Chuguransky, Sara Rocío. European Bioinformatics Institute; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Drechsel, Oliver. Robert Koch-Institute; AlemaniaFil: Finn, Robert D.. Biocurator for Pfam and InterPro databases; Reino UnidoFil: Fritz, Adrian. Helmholtz Centre for Infection Research; AlemaniaFil: Fuchs, Stephan. Robert Koch-Institute; AlemaniaFil: Hattab, Georges. University Marburg; AlemaniaFil: Hauschild, Anne Christin. University Marburg; AlemaniaFil: Heider, Dominik. University Marburg; AlemaniaFil: Hoffmann, Marie. Freie Universität Berlin; AlemaniaFil: Hölzer, Martin. Friedrich Schiller University Jena; AlemaniaFil: Hoops, Stefan. University of Virginia; Estados UnidosFil: Kaderali, Lars. University Medicine Greifswald; AlemaniaFil: Kalvari, Ioanna. European Bioinformatics Institute; Reino UnidoFil: von Kleist, Max. Robert Koch-Institute; AlemaniaFil: Kmiecinski, Renó. Robert Koch-Institute; AlemaniaFil: Kühnert, Denise. Max Planck Institute for the Science of Human History; AlemaniaFil: Lasso, Gorka. Albert Einstein College of Medicine; Estados UnidosFil: Libin, Pieter. Hasselt University; BélgicaFil: List, Markus. Universitat Technical Zu Munich; AlemaniaFil: Löchel, Hannah F.. University Marburg; Alemani
Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are free to use and available online, either through web applications or public code repositories.Peer Reviewe
X ray absorption spectroscopy using a self seeded soft X ray free electron laser
X ray free electron lasers XFELs enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x ray bandwidth is an order of magnitude narrower than that of self amplified spontaneous emission SASE , and additional monochromatization is needed. Here we compare L edge x ray absorption spectroscopy XAS of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source LCLS with a new technique based on self seeding of LCLS. We demonstrate how L edge XAS can be performed using the self seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x ray spectroscopy measurement
Discrete flow mapping: transport of phase space densities on triangulated surfaces
Energy distributions of high frequency linear wave fields are often modelled
in terms of flow or transport equations with ray dynamics given by a
Hamiltonian vector field in phase space. Applications arise in underwater and
room acoustics, vibro-acoustics, seismology, electromagnetics, and quantum
mechanics. Related flow problems based on general conservation laws are used,
for example, in weather forecasting or molecular dynamics simulations.
Solutions to these flow equations are often large scale, complex and
high-dimensional, leading to formidable challenges for numerical approximation
methods. This paper presents an efficient and widely applicable method, called
discrete flow mapping, for solving such problems on triangulated surfaces. An
application in structural dynamics - determining the vibro-acoustic response of
a cast aluminium car body component - is presented.Comment: 12 pages, 6 figure